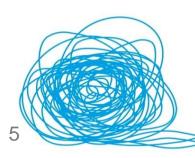

STRmix™

Dr John Buckleton

Profile interpretation

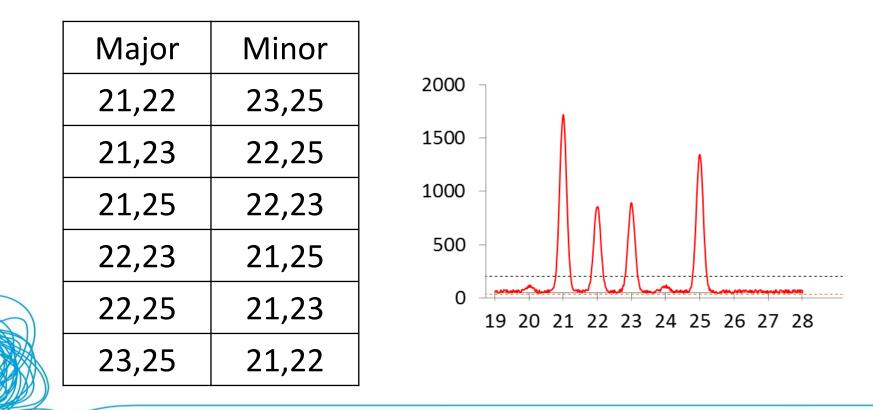
- Consider the locus below. What are the possible genotypes of the contributors?
- Information such as the apparent number of contributors and the approximate mixture proportions would help...

Profile interpretation


• We are considering $p(O|S_j)$...

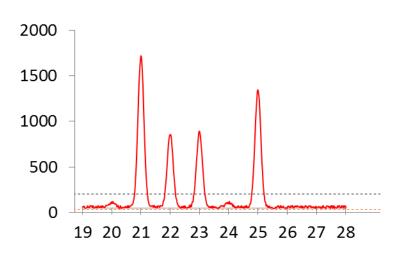
...what is the probability of the observed profile given a proposed genotype combination, S_j ?

- We might use some heuristics to limit the list of possible combinations
 - Peak height ratio (aka heterozygote balance)
 - Stutter ratios
 - Mixture proportion/ratio

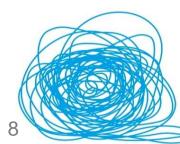

Probability and likelihood

- The probability of the observed profile given a proposed genotype set: p(O|S_i)
- This is equivalent to the *likelihood* of the proposed genotype set given the observed profile: $L(S_j|O)$

Profile interpretation


• Assuming two contributors, there are six possible genotype combinations:

Binary methods


- Using a binary model we assign a weight of 1 when a genotype set explains the profile well
- And we assign a weight of 0 when a genotype set provides a poor explanation of the profile

	Major	Minor	p(<i>O</i> <i>S_j</i>)
	21,25	22,23	1
	21,23	22,25	0
	21,22	23,25	0
	23,25	21,22	0
	22,25	21,23	0
1	22,23	21,25	0
J			

'Binary' methods

"The binary model assigns the values zero and one to the unknown probabilities, $Pr(O|S_j)$... In essence $Pr(O|S_j)$ is assigned a value of zero if it is thought that this probability is very small relative to the other probabilities. $Pr(O|S_j)$ is assigned a value of one if it is thought that this value is relatively large."

A comparison of statistical models for the analysis of complex forensic DNA profiles Hannah Kelly ^{a,b,*}, Jo-Anne Bright ^a, John S. Buckleton ^a, James M. Curran ^b

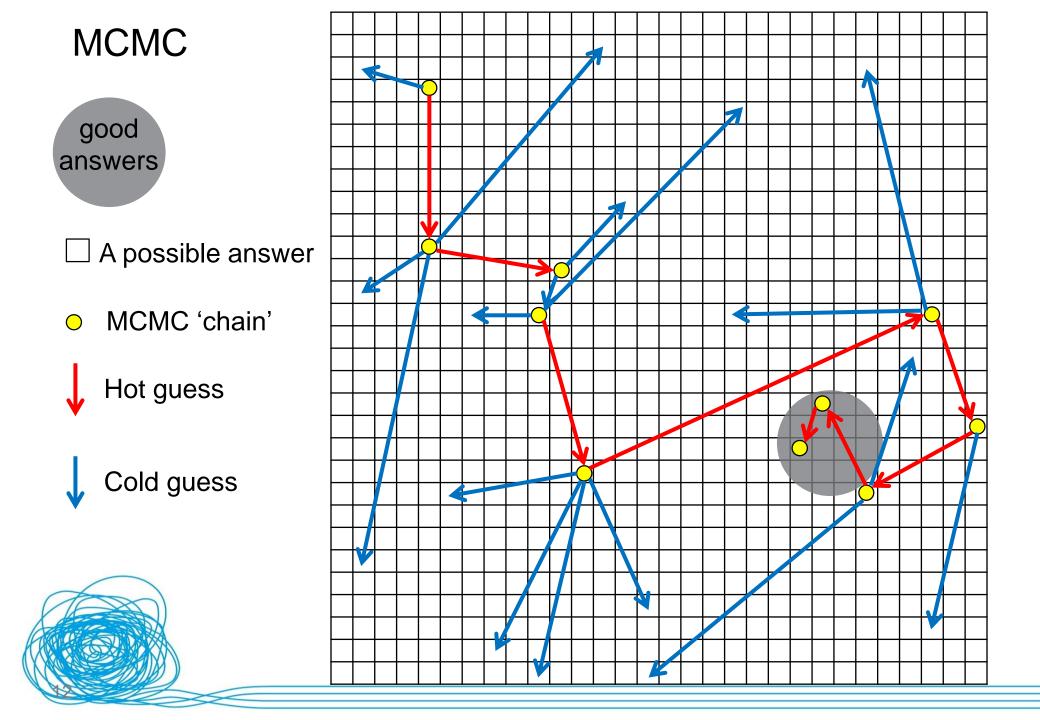
Science and Justice 54 (2014) 66-70

Continuous methods

- In reality these probabilities are *continuous*
- The probabilities range between 0 and 1 inclusive

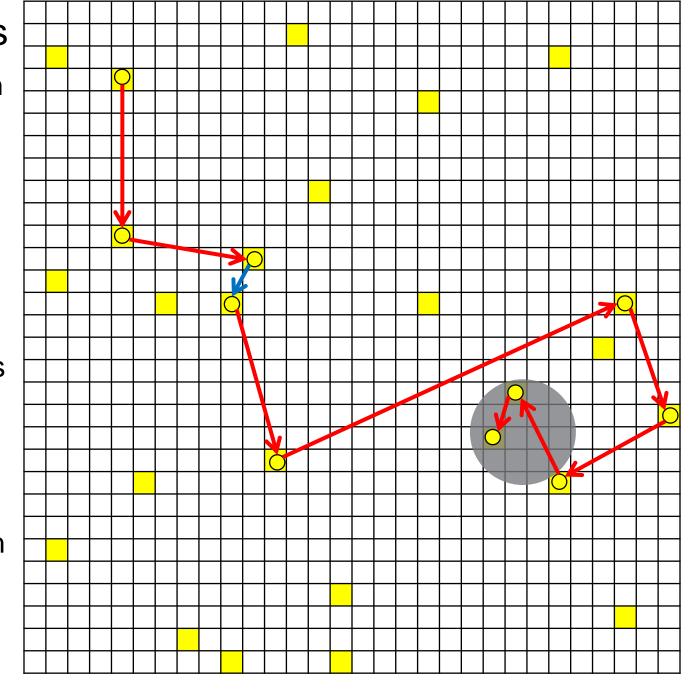
Major	Minor	p(<i>O</i> <i>S_j</i>)	
21,25	22,23	0.79	2000
21,23	22,25	0.05	1500 -
21,22	23,25	0.05	
23,25	21,22	0.05	500 -
22,25	21,23	0.05	0 19 20 21 22 23 24 25 26 27
22,23	21,25	0.01	
)			

28


STRmix™

- Calculates $p(O|S_j)$
 - Takes into account number of contributors, degradation, template, stutter, replicates...
- Called *weights*
- The weights are the primary output of STRmix[™]
- The weights are used when calculating a likelihood ratio

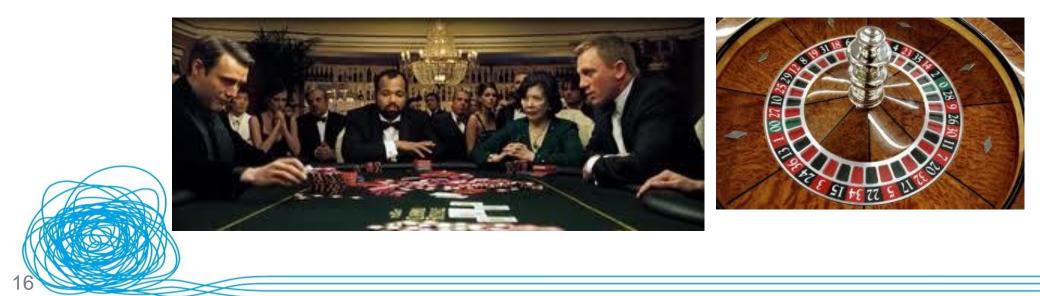
Calculation of the weights


- Determined using Markov chain Monte Carlo (MCMC)
- Likened to a game of hot and cold

MCMC - maths

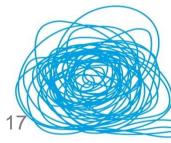
- We ran one chain for 10 moves
- Notice that we only had to test a small fraction of all the possible answers to reach the good answers
- Imagine if we ran the MCMC again for 10 moves: it would likely reach the good space, but via a different route ("random
 ¹³ walk")

Iterations and accepts/moves


- *Iteration*: A proposed explanation for the recovered profile
 - The number of iterations can be in the billions depending in the complexity of the problem
- Accepts or Moves: A proposal (iteration) that is accepted (either hot or cold). By default, we run each chain for 50,000 accepts. Accepts are a subset of iterations

Markov chain Monte Carlo

- Formally: "Markov chain Monte Carlo (MCMC) methods are a class of algorithms for sampling from probability distributions based on constructing a Markov chain that has the desired distribution as its equilibrium distribution."
- Less formally: An algorithm based on standard mathematical principles that assigns a likelihood for each genotype combination
- In STRmix[™] the MCMC is 'solving' the equation for genotype weights


MCMC

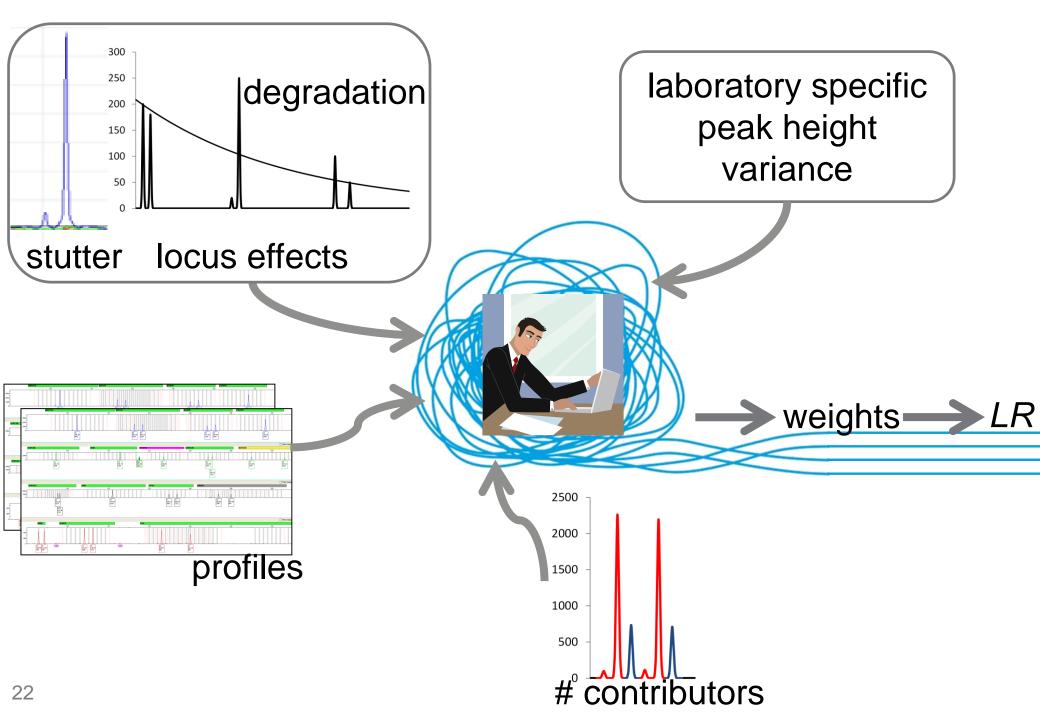
- Monte Carlo methods rely on random sampling
- Named after Monte Carlo casino

Examples of MCMC in common use

- Physics
 - Predicting behaviour of radiation particles
- Genetics
 - Creating phylogenetic trees
- Engineering
 - Predicting behaviour of buildings in earthquakes
- Aeronautics, social science, computational linguistics, weather predicting, stock market, betting

MCMC variability

- Each time we run the same problem, STRmix[™] gives a different answer
- Importantly, these answers are all clustered around each other and the amount that they would vary is small in relation to the size of the number itself


What is STRmix[™]?

- Probabilistic software for the resolution of forensic DNA profiles
- A highly validated software that implements the most modern DNA interpretation methods
- Fully published and supported expert software

Input file

- Analysed text file into STRmix
 - Containing locus names, peaks, heights and their size
- Remove artifacts at analysis
 - Pull up and dye blobs
 - User laboratory determined AT
- STRmix models any type of stutter probabilistically

DNA evidence

2009

Victoria police ban

Victoria police ban DNA evidence

19:15 AEST Wed Dec 9 2009

Victoria's police chief Simon Overland has ordered all DNA evidence be banned from court proceedings.

The ban, effective immediately, is expected to last until mid-January at the earliest while police try to fix an error in how DNA is interpreted in its forensic labs.

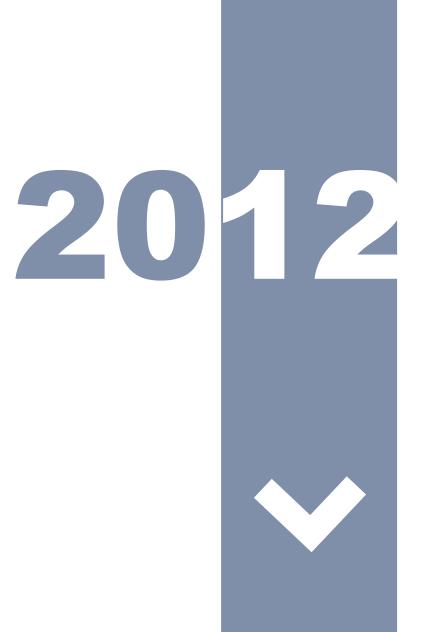
Mr Overland said the ban would impact on at least six cases being heard in Melbourne's Magistrates and County courts. Further cases dating back to September could also be affected.

Victoria Police chief Simon Overland has ordered all DNA evidence be banned from court proceedings.

2010

Development starts

Government of South Australia

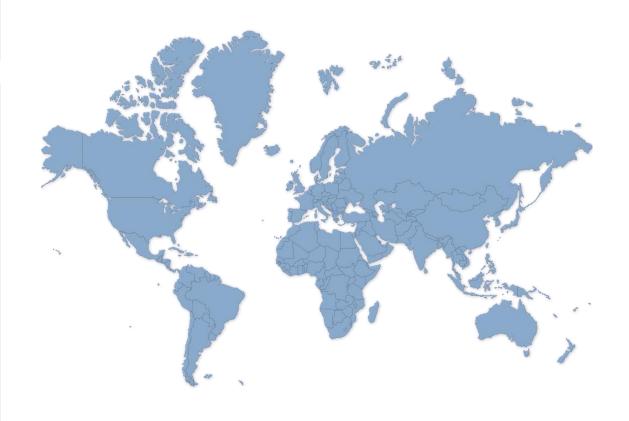


Prototype developed

201

Start Mixture Analys	sis	Settings
LR from prev analys	is	Model Maker
Search database		Exit DyNAmix
		Abou

ESR and FSSA go live casework


STRmix V1.08 released in Australia

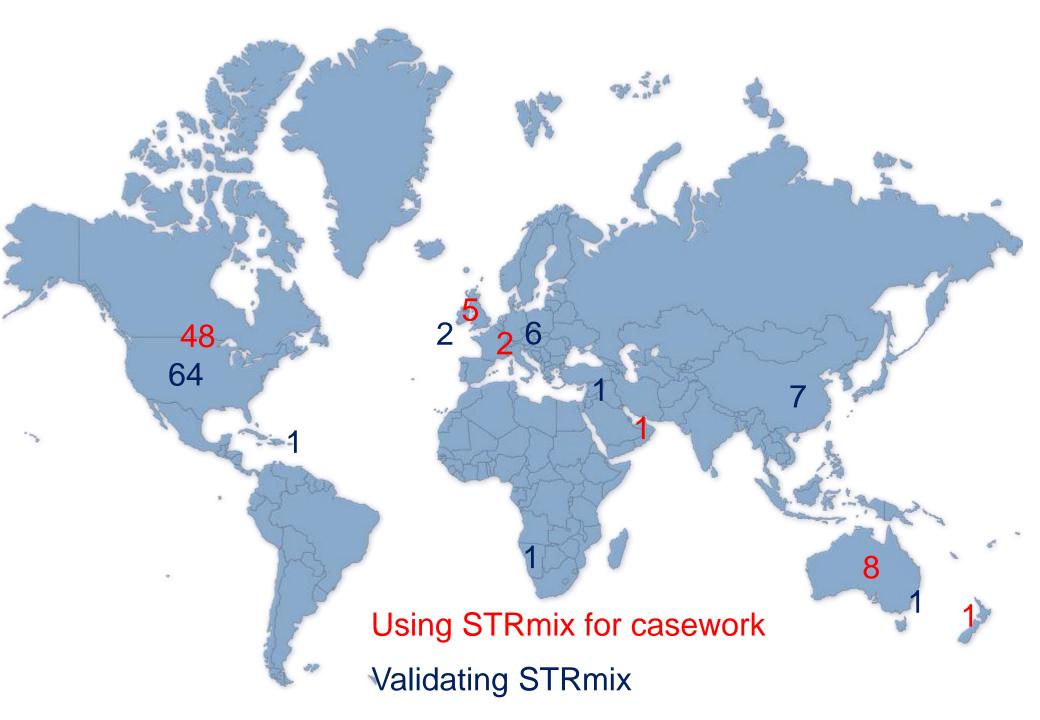
20

STRmix V2.0 released internationally

2012

STRmix V2.3 STRmix V2.4 STRmix V2.5

Improved modeling Improved workflows Run time improvements Memory improvements


2018

STRmix V2.6

Current version

STRmix		- 0
STRmix.		
	1	
Interpretation	Investigation	Model Maker
Interpret a DNA profile	Carry out further investigation into the results	Model your laboratory's data
Batch Mode	Administration	Reports
Perform batched calculations	Customise STRmix settings and set up kits	Set up and generate reports from results

STRmix 2.6.2 © 2019 FSSA and ESR

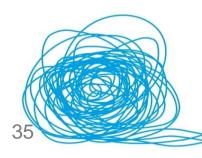
STRmix features

- Fully configurable
 - Common kit and allele frequency file exemplars
 - Configurable defaults/settings
 - Configurable reports
- Deconvolution of profiles
 - 1 through 5 contributors
 - Replicate amplifications
 - Different kits

STRmix features

- Variable number of contributors
- Hd true tester
- LR from previous deconvolution
- Batch mode (setup and queue processes)
- Model maker
- CODIS report

Likelihood ratios


- By default considering unknown individual's, common relatives
- (optional) Unified unrelated and related under Hd
- (optional) Stratified across sub populations
- Lower bound taking into account allele frequency, MCMC, theta variability

• Database search

Standard and familial propositions

Run settings

- STRmix runs on a standard desktop or laptop
- No server required
- Standalone and server licenses available

Hardware requirements

Low spec ¹	Medium spec ²	High spec ³
Intel core 2 (Quad core) processor	Intel i5, i7 2.6 GHz	Intel 2.4 GHz Xeon CPU E54
4 GB RAM	16 GB RAM	128 GB RAM
Minimum of 2 cores	Minimum of 4 cores	Minimum of 8 cores
300MB free HDD space⁵	300MB free HDD space⁵	300MB free HDD space⁵
Windows 7 or above	Windows 7 Professional 64 bit or above	Windows 7 Professional 64 bit or above
1-3p mixtures Some 4p	Most 1-4p mixtures	Most 1-5p mixtures

Approximate run times

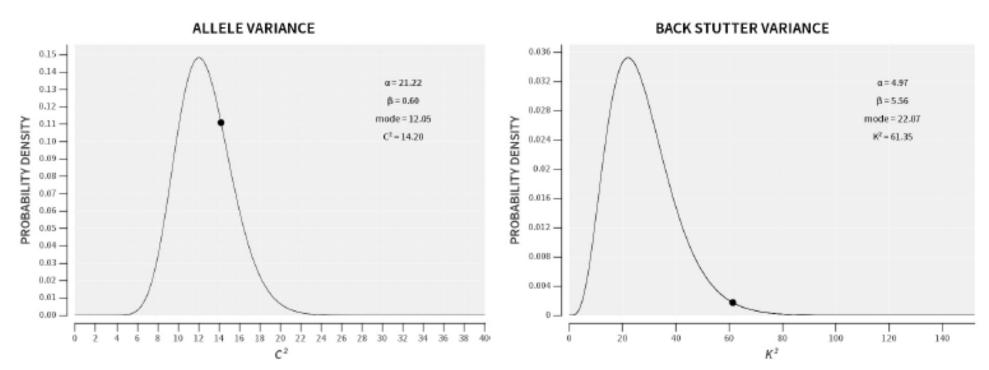
- (Depends on hardware settings)
- Single source < 1 minute
- Two person mixture < 5 minutes
- Three person mixtures < 15 minutes
- Four person mixtures < 1 hour
- Five person mixture < 12 hours

Outputs

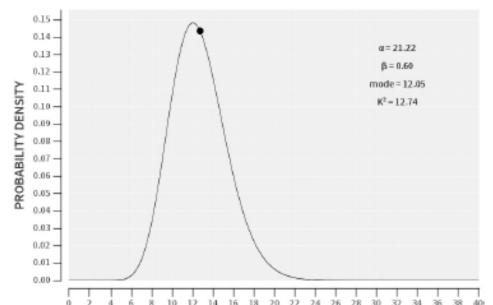
- Fully configurable report
- Contains settings, inputs, genotype combinations, weights
- Diagnostics for run performance

Interpretation Report

DETAILS		RUN PARAMETERS	
STRMIX VERSION:	STRmix 2.6.1 jbright	CONTRIBUTORS: PROFILING KIT:	3 Investigator_24plex_3500
RUN DATE:	24 Feb 2019 21:48:34	SAMPLE FILE:	CMIX_2-2_D06_3500 Instrument_Investigator 24_plex.hid_EV.csv
TOTAL RUN TIME:	12 minutes, 0 seconds		
REPORT VERSION: REPORT RUN:	STRmix 2.6.2 01 May 2019 20:40:53		
CASE NUMBER:	QIAGEN		
SAMPLE NAME:	CMIX_2-2_D06		
COMMENTS:			
SEED:	401301		


SUMMARY OF CONTRIBUTORS

1	2	3
3461	2059	784
55%	33%	12%
5.944	6.502	1.406
2.0964E-3	4.9769E-3	2.2186E-3
	5.944	55% 33% 5.944 6.502


POST BURN-IN SUMMARY

Total iterations	6,643,577	Acceptance rate	1 in 16.61
Effective sample size	20,052.49	log(likelihood)	38.58
Gelman-Rubin convergence diagnostic	1.16		
Allele variance (mode = 12.046)	14.204	Back Stutter variance (mode = 22.073)	61.352
Forward Stutter variance (mode = 12.046)	12.735		

VARIANCE CHARTS

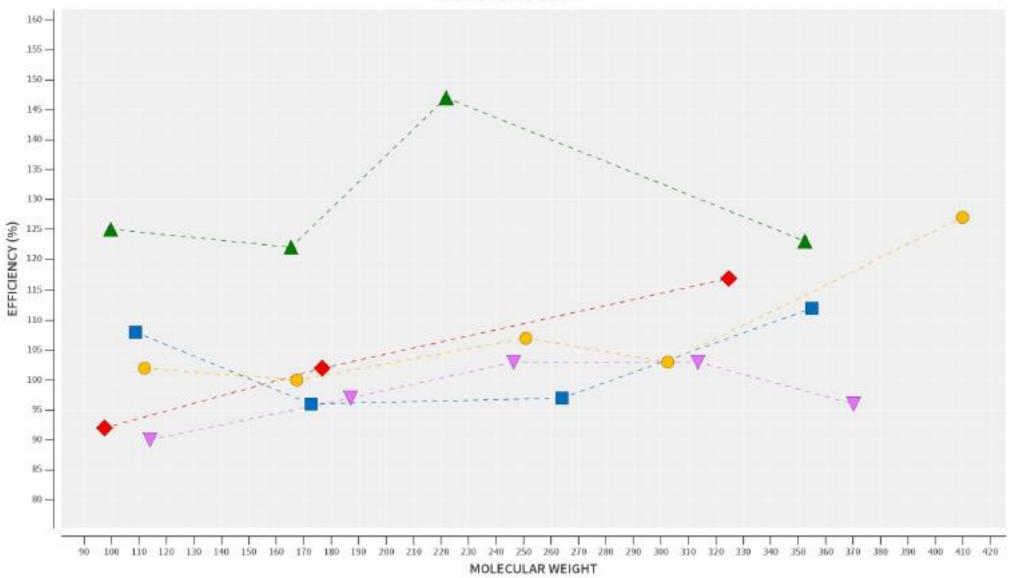
FORWARD STUTTER VARIANCE

WEIGHTS

LOCUS	CONTRIBUTORS			WEIGHT
	1 (55%)	2 (33%)	3 (12%)	- (HIGHLIGHT ≥ 0.99)
TH01	8,9	8,9.3	8,9.3	2.8179E-1
	8,8	9, 9.3	9, 9.3	1.0048E-1
	8,9	8,9.3	9.3, 9.3	6.6817E-2
	8, 9.3	8, 9	8,9	6.5073E-2
	8,9	8, 9.3	8,9	5.9530E-2
	8,9	8, 9.3	9, 9.3	5.6507E-2
	8,8	9, 9.3	9,9	5.2356E-2
	9, 9.3	8, 8	8,8	5.1979E-2
	8,9	8,9.3	8,8	4.8350E-2
	8,9	9.3, 9.3	8,8	4.1835E-2
	8,8	9, 9.3	8,9	3.7797E-2
	9, 9.3	8, 8	8,9	2.5354E-2
	8, 9.3	8, 9	9,9	2.5102E-2
	8,9	8, 8	9.3, 9.3	1.7948E-2
	8,8	9, 9	9.3, 9.3	1.2717E-2
	8, 9.3	9, 9	8,8	9.8235E-3
	8, 9.3	8, 9	8,8	9.3541E-3
	8,8	9, 9.3	8, 9.3	9.2422E-3
	8,9	8,9.3	9,9	5.2756E-3
	8,8	9, 9.3	9.3, 9.3	3.8238E-3
	8,8	9, 9.3	8,8	3.4232E-3
	8, 9.3	8,8	9,9	2.8474E-3
	8,8	9.3, 9.3	9,9	2.3043E-3
	8,9	9.3, 9.3	8,9	1.8051E-3
	9, 9.3	8,8	8, 9.3	1.3789E-3
	8, 9.3	8,9	9, 9.3	1.1608E-3
	8,9	9.3, 9.3	8, 9.3	9.9449E-4
	9, 9.3	8, 8	9,9	8.1853E-4

COMPONENT INTERPRETATION

CONTRIBUTOR 1 (55%)


Questioned contributor

LOCUS	GENOTYPE	WEIGHT	COMPONENT ≥ 99%
TH01	8,9	58.24%	F, F
	8, 8	22.29%	
	8, 9.3	11.48%	
	9, 9.3	7.99%	
D3S1358	14, 18	45.95%	F, F
	16, 18	31.30%	
	14, 16	22.68%	
	18, 18	0.07%	
	14, 14	0.00%	
VWA	16, 17	58.05%	F, F
	16, 18	27.84%	
	17, 18	13.72%	
	16, 16	0.37%	
	17, 17	0.01%	
	18, 18	0.00%	
D21511	29, 32.2	98.59%	29, F
	29, 29	1.16%	
	28, 29	0.11%	
	28, 32.2	0.09%	
	29, 30	0.03%	
	30, 32.2	0.01%	
	32.2, 32.2	0.00%	
TPOX	8, 8	100.00%	8,8
DYS391			

COMPONENT INTERPRETATION SUMMARY ≥ 99%

LOCUS	CONTRIBUTORS				
	1 (55%)	2 (33%)	3 (12%)		
TH01	F, F	F, F	F, F		
D3S1358	F, F	F, F	F, F		
VWA	F, F	F, F	F, F		
D21511	29, F	F, F	F, F		
TPOX	8, 8	8, F	11, F		
DYS391					
D1S1656	F, F	F, F	15, F		
D125391	F, F	F, F	F, F		
SE33	17, 19	F, F	F, F		
D1051248	F, F	F, F	F, F		
D22S1045	15, 15	F, F	F, F		
D195433	15, F	F, F	F, F		
D8S1179	11, F	F, F	F, F		
D2S1338	19, 23	F, F	F, F		
D25441	F, F	F, F	F, F		
D18551	16, 17	F, F	F, F		
FGA	20.2, 25	F, F	F, F		
D165539	F, F	F, F	F, F		
CSF1PO	F, F	F, F	F, F		
D13S317	F, F	F, F	F, F		
D55818	13, F	F, F	F, F		
D75820	F, F	F, F	F, F		

LOCUS EFFICIENCIES

EVIDENCE INPUT FILES

CMIX_2-2_D06_3500 INSTRUMENT_INVESTIGATOR 24_PLEX.HID_EV.CSV

LOCUS	ALLELE	HEIGHT	SIZE
AM	Х	6549	76
	Υ	5618	79
TH01	7	216	103
	8	6756	107
	9	3559	111
	9.3	2735	114
D3S1358	13	234	162
	14	2630	166
	15	369	171
	16	2378	175
	17	974	179
	18	3048	183
VWA	15	232	258
	16	3071	262
	17	2384	266
	18	1797	270
D21511	28	1200	346
	29	3270	350
	30	819	355
	31.2	178	360
	32.2	1861	364
TPOX	7	2026	93
	8	14040	97
	11	584	109

SETTINGS

CASE SETTINGS

Case number	QIAGEN	
Sample ID	CMIX_2-2_D06	
Comments		
Seed	401301	
Extended output	Ν	
MCMC SETTINGS		
Number of contributors	3	
Use Mx priors	N	
Number of chains	8	
	100,000	
Burn-in accepts per chain	200,000	
	50,000	
Post burn-in accepts per chain		
Burn-in accepts per chain Post burn-in accepts per chain Random walk SD Post burn-in shortlist	50,000	

Ignored loci	DYS391		
Detection thresholds	TH01	80	
	D3S1358	80	
	vWA	80	

Thanks from team STRmix

