STRmix RESOLVE **MORE DNA MIXTURES.**

http://STRmix.esr.cri.nz

The number of contributors

- Q: What's your opinion about how likely it is that there are more than four contributors to this mixed DNA sample
- A: I have absolutely no idea and nor does [the prosecution witness].

OUT

Underestimating – H_p true 30 4p mixtures Constant of the second of the 20 Œ Correct og(LR) as 4 0 -10 -20 • Hp true -30 -20 0 -30 -10 10 20 30 log(LR) as 3 One under

Underestimating – H_a true

	True donors	False donors
One under	Kicks out the smallest, you didn't think it was there	Some inc \rightarrow excl

	True donors	False donors
One under	Kicks out the smallest, you didn't think it was there	Some inc → excl
One over	Big ones stay the same smallest → down 2-3 orders	Some excl \rightarrow inc

	True donors	False donors
One under	Kicks out the smallest, you didn't think it was there	Some inc → excl
One over	Big ones stay the same smallest → down 2-3 orders	Some excl \rightarrow inc
One over and Mx prior	Stay the same	Some excl \rightarrow inc

As long as your LR is big then you are correct or conservative

Forensic Science International: Genetics 37 (2018) 116-125

Contents lists available at ScienceDirect

Forensic Science International: Genetics

journal homepage: www.elsevier.com/locate/fsigen

Research paper

Contributors are a nuisance (parameter) for DNA mixture evidence evaluation

K. Slooten^{a,*}, A. Caliebe^b

^a VU University Amsterdam, Netherlands Forensic Institute (NFI), The Netherlands

^b Institut für Medizinische Informatik und Statistik, Christian-Albrechts-Universität zu Kiel, Germany

 "Thus...the LR will be determined as a weighted average of LR(n) each with the same number n in the numerator and in the denominator."

Consider the weights

$$w_n = \Pr(N = n | G_P, G_C, H_a) \frac{\Pr(N = n | H_p)}{\Pr(N = n | H_a)}$$

where H_p : The POI is a donor H_a : The POI is not a donor N is the number of contributors G_C is the profile of the crime stain and G_P is the profile of the person of interest.

Consider the weights

$$w_n = \Pr(N = n \mid G_P, G_C, H_a)$$

You need to assign N You know the POI's genotype You know the crime sample You assume POI is not a donor

- This suggests no justification
- To look at G_p and G_c and add 1 to "fit" P
- This suggests little justification for different
 N in numerator and denominator

Verbal scales

Adventitious matches can happen... and always could

Contents lists available at ScienceDirect

Forensic Science International: Genetics

journal homepage: www.elsevier.com/locate/fsigen

Research paper

Internal validation of STRmix[™] – A multi laboratory response to PCAST

Check for updates

Jo-Anne Bright^{a,*}, Rebecca Richards^a, Maarten Kruijver^a, Hannah Kelly^a, Catherine McGovern^a, Alan Magee^b, Andrew McWhorter^c, Anne Ciecko^d, Brian Peck^e, Chase Baumgartner^f, Christina Buettner^g, Scott McWilliams^g, Claire McKenna^h, Colin Gallacherⁱ, Ben Mallinderⁱ, Darren Wright^j, Deven Johnson^k, Dorothy Catella¹, Eugene Lien^m, Craig O'Connor^m, George Duncanⁿ, Jason Bundy^o, Jillian Echard^p, John Lowe^q, Joshua Stewart^r, Kathleen Corrado^s, Sheila Gentile^s, Marla Kaplan^t, Michelle Hassler^u, Naomi McDonald^v, Paul Hulme^w, Rachel H. Oefelein^x, Shawn Montpetit^y, Melissa Strong^y, Sarah Noël^z, Simon Malsom^A, Steven Myers^B, Susan Welti^C, Tamyra Moretti^D, Teresa McMahon^E, Thomas Grill^F, Tim Kalafut^G, MaryMargaret Greer-Ritzheimer^H, Vickie Beamer^I, Duncan A. Taylor^{J,K}, John S. Buckleton^{a,L}

False inclusions (Adventitious

2:
A
2:
tc

outors

1% and up

lapping
eles
1%
ጋ%
3%
3%
3%

Forensic Science International: Genetics 9 (2014) 102-110

Contents lists available at ScienceDirect

Forensic Science International: Genetics

journal homepage: www.elsevier.com/locate/fsig

Searching mixed DNA profiles directly against profile databases Jo-Anne Bright^{a,b,*}, Duncan Taylor^c, James Curran^b, John Buckleton^a

Highest adventitious match 730,000

False donor testing

- This tests known false donors against the profile
- Either use a database (say staff) or
- Simulate
- Run against the profile with your system,
- Record the results and present (?)
- Problem To test LR = x you need at least x

 Turing informs us that an LR of x happens less than 1 in x

Forensic Science International: Genetics 16 (2015) 165-171

Internal validation compilation

2,825 mixtures 28,250,000 false donors

LR for H _p Support and 1/LR for H _d Support	Verbal Qualifier	Expected less than
[1-2)	Uninformative	1 in 2
[2-99)	Limited Support	1 in 99
[99-9999)	Moderate Support	1 in 9,999
[9999-999,999)	Strong Support	1 in 999,999
≥999,999	Very Strong Support	

Internal validation compilation

2,825 mixtures 28,250,000 false donors

LR for H _p Support and 1/LR for H _d Support	Verbal Qualifier	Expected less than	Fraction of false donor LRs in this range (N = 28,250,000)
[1-2)	Uninformative	1 in 2	1 in 312
[2-99)	Limited Support	<u>1 in 99</u>	1 in 318
[99-9999)	Moderate Support	1 in 9,999	1 in 18,000
[9999-999,999)	Strong Support	1 in 999,999	1 in 1,400,000
≥999,999	Very Strong Support		

Forensic Science International: Synergy 1 (2019) 24-34

Contents lists available at ScienceDirect

Forensic Science International: Synergy

journal homepage: https://www.journals.elsevier.com/ forensic-science-international-synergy/

Check for updates

Heidi Eldridge

RTI International, 3040 E. Cornwallis Rd., Research Triangle Park, NC, 27709, USA

From Turing we can infer that

$$\tilde{p} \leq \frac{1}{LR_{POI}}$$
 Equation 2

The chance of an *LR* greater than or equal to LR_{POI} is less than $1/LR_{POI}$ This is true for every *LR* not just LR_{POI}

The distribution of Ha true

-the shape depends on the profile -there will be a maximum,

- Not directly known to us but potentially calculable
- this is probably slightly bigger that the largest Hp true

Forensic Science International: Genetics 27 (2017) 74-81

Research paper

Importance sampling allows H_d true tests of highly discriminating DNA profiles

Duncan Taylor^{a,b,*}, James M. Curran^c, John Buckleton^{d,e}

Contents lists available at SciVerse ScienceDirect

Forensic Science International

journal homepage: www.elsevier.com/locate/forsciint

Daniel Ramos*, Joaquin Gonzalez-Rodriguez

Research Institute on Forensic Science (ICFS), ATVS, Biometric Recognition Group, Escuela Politecnica Superior, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 11, E-28049 Madrid, Spain

Calibration

50% chance of rain How could we check Collect times he says 50% and see if 50% of these have rain

In the 31 lab set

- 28,250,000 false donors
- 10,297 true donors
- Prior odds 10,297/28,250,000
- Each LR can be turned into a posterior odds and
- Then into a posterior probability
- Are we "right" the "right" number of times

Range of		Number of	Number of true
posterior		false donors in	donors in this
probabilities	Observed	this interval	interval
0.977 to 1.000		4	7657
0.891 to 0.977		7.6	57
0.813 to 0.891		$\frac{1}{1}$	$\frac{1}{657} = 0.9995$
0.398 to 0.813		4+/,	,037
0.158 to 0.398		200	201
0.063 to 0.158		563	162
0.025 to 0.063		1,366	165
0.010 to 0.025		3,533	131
0.004 to 0.010		9,569	133
0.002 to 0.004		24,603	115
0.001 to 0.002		64,106	112
0.0003 to 0.0006		156,994	115
0.0000 to 0.0003		28,037,070	760

	Range of		Number of	Number of true
	posterior		false donors in	donors in this
	probabilities	Observed	this interval	interval
	0.977 to 1.000	0.9995	4	7657
	0.891 to 0.977		5	342
	0.813 to 0.891		7	111
	0.398 to 0.813		60	314
	0.158 to 0.398		200	201
	0.063 to 0.158		563	162
	0.025 to 0.063		1,366	165
	0.010 to 0.025		3,533	131
	0.004 to 0.010		9,569	133
	0.002 to 0.004		24,603	115
	0.001 to 0.002		64,106	112
A	0.0003 to 0.0006		156,994	115
38	0.0000 to 0.0003		28,037,070	760

	Range of		Number of	Number of true
	posterior		false donors in	donors in this
	probabilities	Observed	this interval	interval
	0.977 to 1.000	0.9995	4	7657
	0.891 to 0.977	0.9856	We are "rig	ht" too often 2
	0.813 to 0.891		Not enough	n false donors 1
	0.398 to 0.813			514
	0.158 to 0.398		200	201
	0.063 to 0.158		563	162
	0.025 to 0.063		1,366	165
	0.010 to 0.025		3,533	131
	0.004 to 0.010		9,569	133
	0.002 to 0.004		24,603	115
ł	0.001 to 0.002		64,106	112
R	0.0003 to 0.0006		156,994	115
39	0.0000 to 0.0003		28,037,070	760

Range of		Number of	Number of true
posterior		false donors in	donors in this
probabilities	Observed	this interval	interval
0.977 to 1.000	0.9995	4	7657
0.891 to 0.977	0.9856	5	342
0.813 to 0.891	0.9407	7	111
0.398 to 0.813	0.8396	60	314
0.158 to 0.398	0.5012	200	201
0.063 to 0.158	0.2234	563	162
0.025 to 0.063	0.1078	1,366	165
0.010 to 0.025	0.0358	3,533	131
0.004 to 0.010	0.0137	9,569	133
0.002 to 0.004	0.0047	24,603	115
0.001 to 0.002	0.0017	64,106	112
0.0003 to 0.0006	0.0007	156,994	115
0.0000 to 0.0003	0.000027	28,037,070	760

Communication

Report of Professor Allan Jamieson in the case of Donte Lee

8th May 2017

Occupation: Director of The Forensic Institute

No one understand the LR

This illustrates that if the LRs of all the millions of potential genotypes from a mixture were calculated and then arranged in

order of size, the suspect is unlikely to be the highest LR.

In other words, the LR provides only the weight of evidence against the specific defendant without reference to other people who would also have a LR greater that 1 (i.e. support for the prosecution hypothesis).

In effect, the LR is a sophisticated version of the disparaged 'consistent with' statement.

Weights and ranks

In our example 8.55 x 10^{38} genotypes 7.5 x 10^9 people

Only about 1 in 10²⁹ genotypes exist

There are about 6 x 10⁷ genotypes above our rank

Hence potentially no actual people above our rank

Most genotypes do not exist

Weir, BS

Likelihood ratio

"The probability of observing this evidence is n times more likely if it arose from Mr X + an unknown person rather than two unknowns"

- Is NOT measuring the probability of Mr Lee being a contributor – many profiles will produce a high LR
- High LRs can be obtained for false propositions
- Depends on the number of contributors
- Does not test all of the possible explanations for the

evidence

A statement about the probability that Mr Smith left the stain can only be made from all the evidence, not from the DNA alone.

The DNA evidence by itself increases the odds that Mr Smith is the donor LR times Over what they would be from the other evidence

This represents extremely strong support that he is the donor

Forensic Science International: Genetics 16 (2015) 226-231

Maarten Kruijver^a, Ronald Meester^a, Klaas Slooten^{a,b,*}

^a Department of Mathematics, VU University, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands ^b Netherlands Forensic Institute, P.O. Box 24044, 2490 AA The Hague, The Netherlands

Its not quite a *p*-value. But there has been considerable criticism.

The LR is the best summary of the evidence.

Fν

Rewording

- Concern about pseudo-frequentist
 expression
- Other profiles "near-by"
- Loss of posterior = LR x prior construct
- Trying to "not change"

Theory of communication

• Q&A

Saying it better does not guarantee understanding better

Saying it better does not guarantee understanding better

Conclusion

- Number of Contributors
 LR stable over NoC
- Adventitious matched do happen
 Actually at less than the expected rate
- Reliable support calibration
- Communication cannot be fixed at one end

Acknowledgement and disclaimer

 This work was supported in part by grant 2017-DN-BX-K541 from the US National Institute of Justice. The opinions or assertions contained in this document are the private views of the author and are not to be construed as official or as reflecting the views of the U.S. Department of Justice.

Professor Bruce Budowle
 Lynn Garcia