

The number of contributors

- Q: What's your opinion about how likely it is that there are more than four contributors to this mixed DNA sample
- A: I have absolutely no idea and nor does [the prosecution witness]. IN

OUT

Underestimating - H_{p} true

One under

Underestimating - H_{a} true

Overestimating $-H_{p}$ true

$4 p N$ vs $4 p N+1$
4p mixtures

Non-Conservative
O Series1
\triangle Series2

One over

	True donors	False donors
One under	Kicks out the smallest, you didn't think it was there	Some inc \rightarrow excl

	True donors	False donors
One under	Kicks out the smallest, you didn't think it was there	Some inc \rightarrow excl
One over	Big ones stay the same smallest \rightarrow down 2-3 orders	Some excl \rightarrow inc

	True donors	False donors
One under	Kicks out the smallest, you didn't think it was there	Some inc \rightarrow excl
One over	Big ones stay the same smallest \rightarrow down 2-3 orders	Some excl \rightarrow inc
One over and $\mathbf{M x}$ prior	Stay the same	Some excl \rightarrow inc

As long as your LR is big then you are correct or conservative

Contents lists available at ScienceDirect

Forensic Science International: Genetics
journal homepage: www.elsevier.com/locate/fsigen

Research paper
Contributors are a nuisance (parameter) for DNA mixture evidence evaluation updates

K. Slooten ${ }^{\mathrm{a}, *}$, A. Caliebe ${ }^{\mathrm{b}}$

${ }^{\text {a }}$ VU University Amsterdam, Netherlands Forensic Institute (NFI), The Netherlands
${ }^{\text {b }}$ Instï̀ut für Medizinische Informatik und Statistik, Christian-Albrechts-Universität zu Kiel, Germany

- "Thus...the LR will be determined as a weighted average of $L R(n)$ each with the same number n in the numerator and in the denominator."

Consider the weights

$$
w_{n}=\operatorname{Pr}\left(N=n \mid G_{P}, G_{C}, H_{a}\right) \frac{\operatorname{Pr}\left(N=n \mid H_{p}\right)}{\operatorname{Pr}\left(N=n \mid H_{a}\right)}
$$

where
H_{p} : The POI is a donor
H_{a} : The POI is not a donor
N is the number of contributors
G_{C} is the profile of the crime stain and
G_{P} is the profile of the person of interest.

Consider the weights

$$
w_{n}=\operatorname{Pr}\left(N=n \mid G_{P}, G_{C}, H_{a}\right)
$$

You need to assign N
You know the POl's genotype
You know the crime sample
You assume POI is not a donor

- This suggests no justification
- To look at G_{p} and G_{c} and add 1 to "fit" P
- This suggests little justification for different N in numerator and denominator

Verbal scales

Adventitious matches can happen... and always could

Contents lists available at ScienceDirect
Forensic Science International: Genetics
journal homepage: www.elsevier.com/locate/fsigen

Research paper

Internal validation of STRmix ${ }^{\mathrm{TM}}$ - A multi laboratory response to PCAST

Jo-Anne Bright ${ }^{\text {a,* }}$, Rebecca Richards ${ }^{\text {a }}$, Maarten Kruijver ${ }^{\text {a }}$, Hannah Kelly ${ }^{\text {a }}$, Catherine McGovern ${ }^{\text {a }}$, Alan Magee ${ }^{\mathrm{b}}$, Andrew McWhorter ${ }^{\mathrm{c}}$, Anne Ciecko ${ }^{\mathrm{d}}$, Brian Peck ${ }^{\mathrm{e}}$, Chase Baumgartner ${ }^{\mathrm{f}}$, Christina Buettner ${ }^{g}$, Scott McWilliams ${ }^{g}$, Claire McKenna ${ }^{\text {h }}$, Colin Gallacher ${ }^{\text {i }}$, Ben Mallinder ${ }^{i}$, Darren Wright ${ }^{\mathrm{j}}$, Deven Johnson ${ }^{\mathrm{k}}$, Dorothy Catella ${ }^{1}$, Eugene Lien ${ }^{\mathrm{m}}$, Craig O'Connor ${ }^{\mathrm{m}}$, George Duncan ${ }^{\text {n }}$, Jason Bundy ${ }^{\text {o }}$, Jillian Echard ${ }^{\mathrm{p}}$, John Lowe ${ }^{\mathrm{q}}$, Joshua Stewart ${ }^{\mathrm{r}}$, Kathleen Corrado ${ }^{\text {s }}$, Sheila Gentile ${ }^{\text {s }}$, Marla Kaplan ${ }^{\mathrm{t}}$, Michelle Hassler ${ }^{\mathrm{u}}$, Naomi McDonald ${ }^{\mathrm{v}}$, Paul Hulme ${ }^{\mathrm{w}}$, Rachel H. Oefelein ${ }^{\mathrm{x}}$, Shawn Montpetit ${ }^{\mathrm{y}}$, Melissa Strong ${ }^{\mathrm{y}}$, Sarah Noël ${ }^{\mathrm{z}}$, Simon Malsom ${ }^{\mathrm{A}}$, Steven Myers ${ }^{\mathrm{B}}$, Susan Welti ${ }^{\mathrm{C}}$, Tamyra Moretti ${ }^{\mathrm{D}}$, Teresa McMahon ${ }^{\mathrm{E}}$, Thomas Grill ${ }^{\mathrm{F}}$, Tim Kalafut ${ }^{\mathrm{G}}$, MaryMargaret Greer-Ritzheimer ${ }^{\mathrm{H}}$, Vickie Beamer ${ }^{\mathrm{I}}$, Duncan A. Taylor ${ }^{\mathrm{J}, \mathrm{K}}$, John S. Buckleton ${ }^{\text {a,L }}$

False inclusions (Adventitious

Contents lists available at ScienceDirect

Forensic Science International: Genetics

```
journal homepage: www.elsevier.com/locate/fsig
```

Searching mixed DNA profiles directly against profile databases
Jo-Anne Bright ${ }^{\text {a,b,* }}$, Duncan Taylor ${ }^{\text {c }}$, James Curran ${ }^{\text {b }}$, John Buckleton ${ }^{\text {a }}$

Highest adventitious match 730,000

False donor testing

- This tests known false donors against the profile
- Either use a database (say staff) or
- Simulate
- Run against the profile with your system,
- Record the results and present (?)
- Problem To test $L R=x$ you need at least x
- Turing informs us that an $L R$ of x happens less than 1 in x

Internal validation compilation

2,825 mixtures $28,250,000$ false donors

LR for H_{p} Support and 1/LR for H_{d} Support	Verbal Qualifier	Expected less than
[1-2)	Uninformative	1 in 2
[2-99)	Limited Support	1 in 99
[99-9999)	Moderate Support	1 in 9,999
[9999-999,999)	Strong Support	1 in 999,999
2999,999	Very Strong Support	

Internal validation compilation

2,825 mixtures $28,250,000$ false donors

LR for $\mathrm{H}_{\text {p }}$			
Support and		Expected	Fraction of false donor LRs
$\text { 1/LR for } \mathrm{H}_{d}$	Verbal Qualifier	less than	in this range ($\mathrm{N}=$
Support			28,250,000)
[1-2)	Uninformative	1 in 7	1 in 312
[2-99)	Limited Support	$1 \text { ing9 }$	1 in 318
[99-9999)	Moderate Support	1 in 9,999	1 in 18,000
[9999-999,999)	Strong Support	1 in 999,999	1 in 1,400,000
<999,999	Very Strong Support		\bigcirc

Juror comprehension of forensic expert testimony: A literature review and gap analysis

Heidi Eldridge

RTI International 3040 E Cornwallis Rd, Research Triangle Park, NC, 27709, USA

From Turing we can infer that

$$
\tilde{p} \leq \frac{1}{L R_{P O I}}
$$

Equation 2

The chance of an $L R$ greater than or equal to $L R_{\text {POI }}$ is less than $1 / L R_{\text {POI }}$ This is true for every $L R$ not just $L R_{\text {Pol }}$

The distribution of Ha true

-the shape depends on the profile -there will be a maximum,

- Not directly known to us but potentially calculable
- this is probably slightly bigger that the largest Hp true

A low level four person mixture ($4: 3: 2: 1 \mathrm{pg}$) 12 loci where

Contents lists available at ScienceDirect

Forensic Science International: Genetics

journal homepage: www.elsevier.com/locate/fsig

Research paper
Importance sampling allows H_{d} true tests of highly discriminating DNA profiles

Duncan Taylor ${ }^{\text {a,b,* }}$, James M. Curran ${ }^{\text {c }}$, John Buckleton ${ }^{\text {d,e }}$

400000	Glok Propositions
0	Prosecution: Simulated profile + Unknown
350000	Defence: Two unknowns
250000	Actual simulations Equivalent 'naïve'
150000	1000 1.12 $\times 10^{21}$
100000	Average H_{a} true LR
50000	Hher 1.12

$\log _{10}(L R)$

Contents lists available at SciVerse ScienceDirect

Forensic Science International

Reliable support: Measuring calibration of likelihood ratios ${ }^{\text {T }}$

Daniel Ramos*, Joaquin Gonzalez-Rodriguez

Research Institute on Forensic Science (ICFS), ATVS, Biometric Recognition Group, Escuela Politecnica Superior, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 11, E-28049 Madrid, Spain

Calibration

50% chance of rain
How could we check
Collect times he says 50% and see if 50% of these have rain

In the 31 lab set

- 28,250,000 false donors
- 10,297 true donors
- Prior odds 10,297/28,250,000
- Each LR can be turned into a posterior odds and
- Then into a posterior probability
- Are we "right" the "right" number of times

Range of posterior probabilities	Observed	Number of false donors in this interval	Number of true donors in this interval
0.977 to 1.000		4	7657
0.891 to 0.977		7,657	
0.813 to 0.891		$\overline{4+7,657}=0.9995$	
0.398 to 0.813			
0.158 to 0.398		200	201
0.063 to 0.158		563	162
0.025 to 0.063		1,366	165
0.010 to 0.025		3,533	131
0.004 to 0.010		9,569	133
0.002 to 0.004		24,603	115
0.001 to 0.002		64,106	112
0.0003 to 0.0006		156,994	115
0.0000 to 0.0003		28,037,070	760

Range of posterior probabilities	Observed	Number of false donors in this interval	Number of true donors in this interval
0.977 to 1.000	0.9995	4	7657
0.891 to 0.977		5	342
0.813 to 0.891		7	111
0.398 to 0.813		60	314
0.158 to 0.398		200	201
0.063 to 0.158		563	162
0.025 to 0.063		1,366	165
0.010 to 0.025		3,533	131
0.004 to 0.010		9,569	133
0.002 to 0.004		24,603	115
0.001 to 0.002		64,106	112
0.0003 to 0.0006		156,994	115
0.0000 to 0.0003		28,037,070	760

Range of posterior probabilities	Observed	Number of false donors in this interval	Number of true donors in this interval
0.977 to 1.000	0.9995	4	7657
0.891 to 0.977	0.9856	We are "right" too often Not enough false donors up here	
0.813 to 0.891			
0.398 to 0.813			
0.158 to 0.398		200	201
0.063 to 0.158		563	162
0.025 to 0.063		1,366	165
0.010 to 0.025		3,533	131
0.004 to 0.010		9,569	133
0.002 to 0.004		24,603	115
0.001 to 0.002		64,106	112
0.0003 to 0.0006		156,994	115
0.0000 to 0.0003		28,037,070	760

Range of posterior probabilities	Number of false donors in	Number of true donors in this interval	
$\mathbf{0 . 9 7 7}$ to 1.000	0.9995	4	7657
$\mathbf{0 . 8 9 1}$ to 0.977	$\mathbf{0 . 9 8 5 6}$	5	342
$\mathbf{0 . 8 1 3}$ to 0.891	$\mathbf{0 . 9 4 0 7}$	$\mathbf{7}$	111
$\mathbf{0 . 3 9 8}$ to 0.813	$\mathbf{0 . 8 3 9 6}$	60	314
$\mathbf{0 . 1 5 8}$ to 0.398	$\mathbf{0 . 5 0 1 2}$	200	201
$\mathbf{0 . 0 6 3}$ to 0.158	$\mathbf{0 . 2 2 3 4}$	563	162
$\mathbf{0 . 0 2 5}$ to 0.063	$\mathbf{0 . 1 0 7 8}$	1,366	165
$\mathbf{0 . 0 1 0}$ to 0.025	$\mathbf{0 . 0 3 5 8}$	3,533	131
$\mathbf{0 . 0 0 4}$ to 0.010	$\mathbf{0 . 0 1 3 7}$	9,569	133
$\mathbf{0 . 0 0 2}$ to 0.004	$\mathbf{0 . 0 0 4 7}$	24,603	115
$\mathbf{0 . 0 0 1}$ to 0.002	0.0017	64,106	112
$\mathbf{0 . 0 0 0 3}$ to 0.0006	$\mathbf{0 . 0 0 0 7}$	156,994	115
$\mathbf{0 . 0 0 0 0}$ to 0.0003	0.000027	$28,037,070$	760

Communication

Report of Professor Allan Jamieson in the case of Donte Lee
$8^{\text {th }}$ May 2017
Occupation: Director of The Forensic Institute
No one understand the LR

This illustrates that if the LRs of all the millions of potential genotypes from a mixture were calculated and then arranged in order of size, the suspect is unlikely to be the highest LR.
In other words, the LR provides only the weight of evidence against the specific defendant without reference to other people who would also have a LR greater that 1 (i.e. support for the prosecution hypothesis).
In effect, the LR is a sophisticated version of the disparaged 'consistent with' statement.

All profiles

Weights and ranks

Number of genotypes STRmix considered

Number of genotypes at this locus

In our example 8.55×10^{38} genotypes
7.5×10^{9} people
Only about 1 in 10^{29} genotypes exist
There are about 6×10^{7} genotypes above our rank
Hence potentially no actual people above our rank

Most genotypes do not exist

Weir, BS

Likelihood ratio

"The probability of observing this evidence is n times more likely if it arose from $\mathrm{Mr} \mathrm{X}+\mathrm{an}$ unknown person rather than two unknowns"

- Is NOT measuring the probability of Mr Lee being a contributor - many profiles will produce a high LR
- High LRs can be obtained for false propositions
- Depends on the number of contributors
- Does not test all of the possible explanations for the evidence

A statement about the probability that Mr Smith left the stain can only be made from all the evidence, not from the DNA alone.

The DNA evidence by itself increases the odds that Mr Smith is the donor LR times
Over what they would be from the other evidence

This represents extremely strong support that he is the donor DNA evidence

Its not quite a p-value. But there has been considerable criticism.

The LR is the best summary of the evidence.

Rewording

- Concern about pseudo-frequentist expression
- Other profiles "near-by"
- Loss of posterior = LR x prior construct
- Trying to "not change"

Theory of communication - Q\&A

- No feedback with jury
- Deliberate noise

Field o

Saying it better does not guarantee understanding better

Bernard Robertson I G. A. Vignaux | Charles E. H. Berger
Interpreting
Evidence

Second Edition

They have some great analogies
N But they are long and I suspect you cannot do them in court

Feedback Receiver

Saying it better does not guarantee understanding better

Field of Exp

I REALLY MEAN

Sender
Decoder

Feedback Receiver

Conclusion

- Number of Contributors
- LR stable over NoC
- Adventitious matched do happen - Actually at less than the expected rate
- Reliable support - calibration
- Communication - cannot be fixed at one end

Acknowledgement and disclaimer

- This work was supported in part by grant 2017-DN-BX-K541 from the US National Institute of Justice. The opinions or assertions contained in this document are the private views of the author and are not to be construed as official or as reflecting the views of the U.S. Department of Justice.
- Professor Bruce Budowle
- Lynn Garcia

