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Notes John Buckleton 2015 
 

 

 

Allele 

Technically this refers to the different forms of a gene.  However in forensic DNA 

profiling it is misused to refer to the different forms of the intron, which, 

technically, is not a gene. 

Autosomes Any pair of chromosomes other than the XY pair 

Bayes theorem 
A mathematical theorem developed by the Reverend Bayes stating that the 

posterior odds are equal to the prior odds multiplied by the likelihood ratio 

Billion 1,000,000,000 

Population 

Bottleneck 

A population bottleneck (or genetic bottleneck) is an evolutionary event in 

which a significant percentage of a population or species is killed or otherwise 

prevented from reproducing, and the population is reduced by 50% or more, often 

by several orders of magnitude. 

 

Chromosome 
A physical structure of the nucleus that contains the DNA sequence.  From the 

Latin for a coloured body from their affinity to take up dye. 

Diploid Describes an organism or cell with two copies of each chromosome. 

Gene flow 
Gene flow is the exchange of genes between populations, which are usually of the 

same species. It may occur with or without the physical movement of individuals 

Genetic Drift 
Genetic drift is the accumulation of purely random changes in relative abundance 

of allele frequencies in a population 

Founder effect 
The establishing a new population by a small number of individuals 

 

Gamete The reproductive cells:  an egg or a sperm.  These are haploid. 

Gonosomes This refers to the XY chromosome pair 

Homozygote The genotype at this locus has two copies of the same allele 

Haploid An organism or cell with a single copy of each chromosome. 

Hardy 

Weinberg 

Equilibrium 

An assumption of independence at one locus. 

Heterozygote The genotype at this locus has two different alleles 

Linkage 

equilibrium 
An assumption of independence between loci. 

Loci/Locus A position on the genome (loci is the plural) 

Mendelian 

inheritance 
Inheritance that follows Mendel's two laws. 

Mitochondria An organelle in eukaryotes associated with the production of ATP. 

Mitochondrial 

DNA 
The DNA present as small circular molecules in the mitochondria 

Mitotype The genotype of the mitochondrial DNA. 

Mosaic trisomy  

mtDNA Mitochondrial DNA 

Paternal 

inheritance 
Inheritance from the father 

paternity index A term used in paternity testing for the likelihood ratio 

Posterior odds Usually referring to Bayes theorem 

Prior odds Usually referring to Bayes theorem 
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Probability of 

paternity 

A term used in paternity testing for the posterior probability of paternity given 

prior odds of 1. 

Product rule 

Product rule.  The assumption of hardy-Weinberg and linkage equilibrium 

together is the product rule 

 

Punnett square 
A method for assigning the probabilities of children conditional on their parents’ 

genotypes 

r or Rc The recombination fraction 

Trisomy 
The situation where an individual has three copies of a chromosome rather than 

the usual pair. 

 
the probability that two alleles taken from two individuals of the same sub-

population are identical by descent (ibd) 

Wahlund effect 
Wahlund effect refers to reduction of heterozygosity in a population caused by 

subpopulation structure 
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FORENSIC GENETICS 

Two laws of heredity have been developed from Mendel’s work. In modern times they are often 

phrased with the benefit of hindsight. We now know the chromosomal basis of inheritance 

associated with meiosis. However, at the time that Mendel wrote, none of this was known. An 

elegant phrasing of Mendel’s laws without over-reliance on modern terminology is given by 

Thompson.768 We follow her treatment here: 

1. The law of segregation. Each individual has two ‘factors’ controlling a given characteristic, 

one being a copy of a corresponding factor in the father of the individual and one being a 

copy of the corresponding factor in the mother of the individual. Further, a copy of a 

randomly selected one of the two factors is copied to each child, independently for different 

children and independently of the factor contributed by the spouse.  

 

2. The law of independent assortment. The factor copied from one pair is independent of the 

factor copied from another factor pair.  

 

Modern molecular biology allows us to see the basis for these laws in the segregation of 

chromosomes and their recombination into a zygote. The human genome is diploid. It has a normal 

complement of 46 chromosomes arranged into 22 pairs of autosomes and a single pair of sex 

chromosomes (XY), the gonosomes. The somatic cells divide mitotically to maintain their diploid 

status whereas the sex cells (gametes) are produced by meiotic divisions and are haploid. During 

meiosis one of each of the pairs of the homologous chromosomes is randomly partitioned to the 

ovum or spermatozoon. In addition, there are recombination events that ‘shuffle’ the genetic 

material further still. At fertilisation the union of an ovum and a single spermatozoon restores the 

diploid chromosomal constitution and in doing so ensures that the embryo receives a random 

assortment of genes, half provided by one biological parent and the remaining half from the other 

biological parent (see figure 10.1). Mendel’s laws form the basis of familial testing. 

Punnett square 

The law of segregation is often expressed by the use of a Punnett square (Punnett 1927).  For the 

above example we would write the genotype of one parent across the top of the square, separating 

the alleles, and the other parent down the left hand side, also separating the alleles.  The genotypes 

of the children are formed by taking the allele from the column and the row.  Each combination is 

equiprobable if Mendel’s first law applies and hence each combination occurs with probability ¼. 

  Genes from one parent 

  a b 

Genes from the other 

parent 

c ac bc 

d ad bd 

An example of a Punnett square.   
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RECOMBINATION 

 

 

 
 

Morgan took parental types RRVV and rrvv and crossed them.  The F1 generation was therefore 

RrVv.  He “backcrossed” these to the recessive rrvv.  If the two loci for eye colour and wing assort 

independently (Meldel’s 2nd law) then we expect the F1 generation to make four types of gametes in 

equal number.  These four types are RV, Rv, rV, and rv.  But in fact Morgan observed more of RV 

and rv.  This was because the loci were close on the same chromosome.   

 

 

 

 

 

Definition: one map unit (m.u.) = recombination fraction x 100.  

 

In honor of the work performed by Morgan, one m.u. = one centimorgan (cM).  

 

In the Morgan backcross there are 151+154 recombinants and 151+154+1339+1195 gametes 

examined.  Hence Rc = 0.1074 this equates to 10.74cM but this is not the preferred was to calculate 

distance.  

 

 

Map distance, recombination fraction, and Kosambi distance. A genetic map distance of 1 

Morgan is that distance such that one cross-over is expected to occur within it per gamete per 

generation. Typically data is expressed in centiMorgans (cM) and in humans 1cM is assumed to 

equal approximately 1000kb. 

 

The simplest relationship between distance and recombination fraction is due to Haldane.383  

Consider two loci, A and B, and denote the genetic distance between them as x, and their 

recombination fraction as Rc.  

 21
1

2

2.72

xRc e

e

  



…..Haldane. 

 

 

Vestigal v Wild type 

V 
Wing 

Purple r Red R Eye 
colour 

Recessive Dominant  

RRVV rrvv 

RrVv 
rrvv 

1195 151 vv 

154 1339 Vv 

rr Rr  

F1 

Parental types 

F2 

One gamete 
from each of 

these is 

examined 

# recombinants
recombination fraction ( )= 

# gametes examined
Rc
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Kosambi took into account the fact that the strands of the DNA molecule are to some extent rigid 

and hence that the occurrence of a crossover will inhibit the possibility of a second nearby 

recombination event. He gives the relationship between the recombination fraction, R, and the map 

distance by: 
4

4

1 1

2 1

x

x

e
Rc

e






 


…..Kosambi. 

 

Haldane, J.B.S 1919.  The combination of linkage values, and the calculation of distance between 

linked factors. J. Genet. 8:299-309. 

 

Kosambi, D.D. 1944.  The estimation of map distance from recombination values.  Ann. Eugen. 

12:172-175. 

 

 

EXAMPLE 

Assume that the map distance was 30centimorgans the recombination fraction is 

 
30

100
21

1
2

0.226

Rc e


  



Haldane 

 

30
100

30
100

4

4

1 1

2 1

0.269

e
Rc

e






 





Kosambi 

 

Example  

(b) The loci X and Y are separated by 34.7 centiMorgans (cM) on chromosome 5. A certain man is 

genotype ab at X and cd at Y.  His mother was  aa at X and cc at Y his father bb at X and dd at Y.  

He has children with a woman who is bb at X and dd at Y.   

 

(i) Please give the expected recombination fraction, Rc.    (2 marks)  

 
34.7

2
100

1
1 0.25

2
Rc e

  
    
 
 

 

 

(ii) Fill in the following table indicating what fraction of his children are expected to be each 

genotype.        (2 marks) 

 

 X 

ab bb 

Y 
cd   

dd   
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You may use Haldane’s equation  21
1

2

xRc e   where x is the distance in Morgans and Rc is 

the recombination fraction.   

 

 X 

ab bb 

Y 
cd 0.375 0.125 

dd 0.125 0.375 

 

 

GENETIC DRIFT 

Genetic drift is the accumulation of purely random changes in relative abundance of allele 

frequencies in a population 

POPULATION BOTTLENECK 

A population bottleneck (or genetic bottleneck) is an evolutionary event in which a significant 

percentage of a population or species is killed or otherwise prevented from reproducing, and the 

population is reduced by 50% or more, often by several orders of magnitude. 

 

FOUNDER EFFECT 

The establishing a new population by a small number of individuals 

 

EXAMPLE.   

Polydactyly (extra fingers and toes, a symptom of Ellis-van Creveld syndrome) is more common in 

Amish communities than in the US population at large.  It is caused by a recessive allele.  The 

Amish community was founded by about 200 individuals.  The Old Order Amish Ellis-van Creveld 

syndrome has been traced back to one couple, Samuel King and his wife, who came to the area in 

1744.  Today it is many times more common in the Amish population (0.066 of live births)  than in 

the American population at large (1 case per 60,000 live births). 

 

Is this founder effect, bottleneck, or drift? 

 

Allele frequency at foundation:  Two individuals both carrying one recessive allele out of 200 

individuals.  Frequency 
2

0.005
400

p    

Allele frequency today:  For a recessive allele you need two copies to have the syndrome.  So  
2 0.066 0.25p p    

 

Frequency in the US: 2 1
0.004

60,000
p p    

 

So the founding population was not too far from a “normal” population (the US today).  It is 

therefore drift since 1744.  BTW founder effect is really a type of genetic bottleneck 

 

GENE FLOW 

Gene flow is the exchange of genes between populations, which are usually of the same species. It 

may occur with or without the physical movement of individuals  
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DRIFT-MIGRATION EQUILIBRIUM 

Since drift and migration work in opposite directions they can form an equilibrium 

 

 

 

Ne = the effective size of the population 

Nm, Nf are the numbers of adult males and females 

m is the fraction of the population replaced by migrants 

 

 

Example:  Estimate θ assuming migration drift equilibrium from these data: 

• Australian intertribal marriage was of the order of 14% of marriages pre-contact 

• Assume sex ratio 3:2 M:F 

• Assume tribal size 500 of which 250 are juveniles or old 

• Estimate Ne and hence θ please 

 

There are 150 adult males and 100 adult females hence 
4 150 100

240
150 100

Ne
 

 


 

If 14% or marriages are intertribal we assume this is 7% of people out and 7% in.  Hence m = 0.07 

1
0.015

1 4 240 0.07
  

  
 

 

Example  

(v) Two of this population found a new population.  They had genotypes AB and AB.  100 years 

later the population has grown to 100 from the original 2.  The new population has genotype 

frequencies 

 

Genotype Count number 

of individuals 

AA 4 

AB 32 

BB 64 

 

Please describe what has happened to this population using the correct population genetic 

description         (2 marks) 

 

Example from the 2009 exam 

 

Q5a 

 

At T=0.  A population on an island has a population of 9000.  A disease occurs in 1 in 900 people in 

this population.  The disease is caused by a recessive gene. 

 

At T=1 a natural disaster drops the population to 10 one of who is a heterozygotic carrier of the 

disease gene.  20 generations later (T = 21) 1 in 20 people are showing the disease.   

 

i)What is the frequency of the disease gene at T=0, T=1, and T = 21? 3 marks 

ii)What evolutionary phenomena have occurred?    2 marks 

 

1

1 4Nem
 



4NmNf
Ne

Nm Nf



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Model answers:   

T=0 0.0333 

T=1 0.05 

T=21 0.224 

Bottleneck and drift 

 

5b An island has a population of 1200.  On average 50% of the individuals are juvenile or old.  The 

male to female ratio is 2:1.  On average 8% of marriages are with neighbouring islands.  What value 

do we expect for θ if a drift migration equilibrium has formed.  You may use: 

 

 

 

 

 

Ne = the effective size of the population 

Nm, Nf    are the numbers of adult males and females 

m is the fraction of the population replaced by migrants 

 

Ne = 533 

 

0.0116           3marks 

 

 

What will happen to θ if the population grows to 12,000 and the drift migration equilibrium re-

establishes.   

 

0.00117           2marks 

 

POPULATION GENETIC MODELS 

We will discuss three models in common use.  The product rule, recommendation 4.1 of NRC II 

and recommendation 4.2 of NRC II. 

PRODUCT RULE 

 

This is the simplest of the available population genetic models.    It is based on the Hardy-

Weinberg law and the concept of linkage equilibrium.805,806  

 

HARDY-WEINBERG LAW 

 

This concept was first published in 1908392,826 although simplified versions had been published 

previously.151,611,878 This thinking developed naturally following the rediscovery of Mendel’s 

work.546 It concerns the relationship between allele probabilities and genotype probabilities at one 

locus.  In essence the Hardy-Weinberg law is a statement of independence between alleles at one 

locus.   

The Hardy-Weinberg law states that the single locus genotype frequency may be assigned as the 

product of allele probabilities  
2

1, 1 2

1 2, 1 22

i i i

i

i i i i

p A A
P

p p A A

 
 


…….equation 3.1 for alleles Ai1, Ai2 at locus i. 

This will be familiar to most in the form  

 

1

1 4Nem
 



4NmNf
Ne

Nm Nf



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2 homozygotes

2 heterozygotes

p

pq





 

 

The assumptions that make the Hardy-Weinberg law true are that the population is infinite, 

randomly mating and that there are no disturbing forces.  Inherent in this law is the assumption of 

independence between genotypes.   

The assumption of random mating assumes that the method of selection of mates does not induce 

dependence between genotypes.  What is suggested is that geography, religion or some other socio-

economic factors induce dependence.  . 

There are, however, a number of factors that can change allele proportions.  These are referred to 

as disturbing forces.  The term is derived from the fact that they change genotype proportions from 

those postulated by HWE.  These factors include selection, migration, and mutation.   

 

B.  LINKAGE AND LINKAGE EQUILIBRIUM 

 

Hardy-Weinberg equilibrium describes a state of independence between alleles at one locus.  

Linkage equilibrium describes a state of independence between alleles at different loci. 

The same set of assumptions that gives rise to Hardy-Weinberg equilibrium plus an additional 

requirement that an infinite number of generations has elapsed also lead to linkage equilibrium.  

This result was generalised to three loci by Geiringer,332 and more generally to any number of loci 

by Bennett.54 

It is worthwhile discussing the difference between linkage equilibrium and linkage, as there is an 

element of confusion about this subject amongst forensic scientists.  Linkage is a genetic 

phenomenon and describes the situation where one of Mendel’s laws breaks down.  It was 

discovered in 1911 by Morgan555,556 working on Drosophila. The discovery was a by product of his 

team’s studies of inheritance that had largely led to the confirmation of the chromosomal theory of 

inheritance.  The first paper on gene mapping appeared in 1913.740   

Specifically the phenomenon of linkage describes when alleles are not passed independently to 

the next generation.  The physical reason for this phenomenon had been identified by 1911 and 

related to the non-independent segregation of alleles that are sufficiently close on the same 

chromosome.597 

The state of linkage can be described by the recombination fraction or by the distance between 

two loci.  Typical data for distance may be expressed in centiMorgans (cM) or in physical distance 

in bases.  In humans 1cM is assumed to equal approximately 1000kb. 

The physical distance may be converted to a recombination fraction by standard formulae.1  

Recombination fractions tend to be different for each sex.  Distances may be given separately or 

sex-averaged. 

Linkage disequilibrium is a state describing the relationship between alleles at different loci.  It 

is worthwhile pointing out that linkage disequilibrium can be caused by linkage or by other 

population genetic effects such as population subdivision 

If the population is in linkage equilibrium then a multilocus genotype probability (P) may be 

assigned by the product of single locus genotype probabilities (Pi). 

 

i

i

P P ….…………..equation 3.2 

The Wahlund effect 

 

This leads us to the classical consideration of the Wahlund principle.801 Assume that a certain 

area is made up of two or more subgroups that breed within each group but not to any large extent 

between the two groups.  Further assume that there are some allele probability differences between 

                                                           
1See Chapter 1 footnote iii  



Page 10 John Buckleton 14/05/2019 

these groups.  Then even if the subpopulations themselves are in Hardy-Weinberg equilibrium the 

full population will not be.  An example is given in table 3.2. 

First we note that the mixed population is not in Hardy-Weinberg equilibrium even though each 

subpopulation is.  Next we note the classical Wahlund effect that all the probabilities for 

homozygotes are increased above Hardy-Weinberg expectation.  The total heterozygote 

probabilities are generally decreased although individual heterozygotes may be above or below 

expectation.  Note that in this example two of the heterozygotes are below expectation whereas one 

is above.  The total for all the heterozygotes will always be down (which is really the same as 

saying the total of the homozygotes is always up).267,836 

 

Table 3.2:  An example of the Wahlund effect 

 

Allele a b c 

Subpopulation 1 0.7 0.2 0.1 

Subpopulation 2 0.2 0.1 0.7 

 

G
en

o
ty

p
e 

S
u
b
p
o
p
u
la

ti
o
n
 1

 

S
u
b
p
o
p
u
la

ti
o
n
 2

 

1
:1

 M
ix

 

H
ar

d
y
-W

ei
n
b
er

g
 

ex
p
ec

ta
ti

o
n

 

aa 0.49 0.04 0.2650 0.2025 

bb 0.04 0.01 0.0250 0.0225 

cc 0.01 0.49 0.2500 0.1600 

ab 0.28 0.04 0.1600 0.1350 

ac 0.14 0.28 0.2100 0.3600 

bc 0.04 0.14 0.0900 0.1200 

 

 

Example:  A survey of genotype counts at a certain locus with three alleles was undertaken.  Below 

are the genotype counts for sample of 1000 from the English and Irish populations. 

 

Genotype English Irish 

15,15 90 10 

15,16 300 120 

15,17 120 60 

16,16 250 360 

16,17 200 360 

17,17 40 90 

 1,000 1,000 

A certain area, “Tasmania” is populated by 4000 English and 1000 Irish people.  Please fill in the 

following table for “Tasmania”  

 

Genotype English Irish  Tasmania 

actual 

Tasmania 

expected 

15,15 90 10  370 338 

15,16 300 120  1,320 1,352 

15,17 120 60  540 572 

16,16 250 360  1,360 1,352 



Page 11 John Buckleton 14/05/2019 

16,17 200 360  1,160 1,144 

17,17 40 90  250 242 

 1,000 1,000  5,000 5,000 

 Allele 

probabilities  

15 0.26  

 16 0.52  

 17 0.22  

 

i.  In the “actual” column please place the counts formed by the total population of 5000 

comprising 4000 English and 1000 Irish people. 

ii.  Please give the allele probabilities for “Tasmania actual” 

iii  In the expected column please place the expected counts if the substructure were ignored 

and Hardy-Weinberg equilibrium was assumed. [6 marks] 

2 marks for each part i-iii.  If an error was made early but then the resulting results were 

correct I recalculated and gave part marks for the correct portions.   

3c   Please use this example to describe the Wahlund effect.   [3 marks] 

Mention of  all homs above expectation.  Total hets below but some may be above. Subtract ¼ mark 

if there is no explicit mention that some hets may be up and some down.  Must mention that all 

homs are up and total hets down or nil marks.     

 

Example  

4. Please answer part a and part b. 

(a) In a certain area of Belgium a sample of 5000 people was taken. The following are the 

sample results: 

 

 Belgium 

aa 370 

ab 280 

ac 1020 

ad 560 

bb 80 

bc 440 

bd 320 

cc 730 

cd 880 

dd 320 

(i) Please calculate the allele probabilities for the a, b, c, and d alleles for this area of 

Belgium.       (2 marks) 

 Pr(a) = 0.26  Pr(b) = 0.12  Pr(c) = 0.38  Pr(d) = 0.24 

(ii) What are the expected genotype probabilities if this area is in Hardy-Weinberg 

equilibrium?        (5 marks) 

  Belgium  

Expected 

under 
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HW 

aa 370 338 

ab 280 312 

ac 1020 988 

ad 560 624 

bb 80 72 

bc 440 456 

bd 320 288 

cc 730 722 

cd 880 912 

dd 320 288 

  0 

  5000 

 

(iii) What are the assumptions that lead to Hardy-Weinberg equilibrium?  (2 marks) 

Infinite population, random mating, no selection, migration or mutation 

(iv)   Is the population of this area of Belgium in Hardy-Weinberg equilibrium?  (1 mark) 

No 
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NRC II RECOMMENDATION 4.1. 

 

NRC II recommendation 4.1 offered a correction for Hardy-Weinberg disequilibrium caused by 

the Wahlund effect.  It was suggested that a correction upwards in frequency be applied to correct 

for the expected upward bias produced by population subdivision.  Further that this correction 

should be applied only to homozygotes.  No correction was recommended for heterozygotes since, 

on average these should have a downward bias (recall that individual heterozygotes may be 

displaced from expectation in either direction).  This comment is generally true for the event of 

population subdivision but would be untrue for populations undergoing admixture.  In admixing 

populations the number of heterozygotes is likely to be elevated.   

The recommendation suggests:   
2

1 1 1 1 2

1 2, 1 2

(1 )

2

i i i i i

i

i i i i

p p p F A A
P

p p A A

   
 


  ……..equation 3.3 

where F is the within person inbreeding coefficient not the between person inbreeding coefficient,

, as written in NRC II. 

This recommendation is a logical way of correcting for Hardy-Weinberg disequilibrium but 

makes no attempt to correct for linkage disequilibrium.  It will suffer from the same approximations 

that are revealed in Table 3.2 for the 1:1 mix from genotypes.  Hence it will still have a very mild 

tendency to underestimate multilocus genotype probabilities.    

Curran et al. tested recommendation 4.1 by comparing this assignment with the “Gold Standard 

Profile Frequency” for a population with a true inbreeding coefficient  =0.03 created by 

simulation. This is reproduced in figure 3.4.  In this simulation 54.4% of values are less than 1 

(reduced from 64.7% for no correction). We see that this estimator still has a small prosecution bias 

and some undesirable variance properties.  

 

THE SUBPOPULATION FORMULAE 

 

If it is difficult to calculate the genotype probability in the population due to the effects of 

population subdivision, can we calculate it in the subpopulation of the suspect?  We note that the 

subpopulation of the suspect may not be known, may not be easily defined, and almost certainly has 

not been sampled.   

A potential solution has been offered by Balding and Nichols and has found widespread 

acceptance both in the forensic and the legal communities.  These formulae29,36,41,267,585 calculate the 

conditional probability of a second profile matching the stain from the subpopulation of the suspect 

given the profile of the suspect. 

 These formulae follow from a formal logic given initially by Balding and Nichols and appearing 

as equations 4.10 in NRC II and 4.20 in Evett and Weir but they date back to the work of Sewall 

Wright873 in the 1940’s.  A reasonably gentle derivation appears in Balding and Nichols.39 

   

  

   

  

1 1

1 2

1 2

1 2

3 1 2 1
,

1 1 2

2 1 1
,

1 1 2

i i

i i

i

i i

i i

p p
A A

P
p p

A A

   

 

   

 

          


 
 

          
  

 

 

i

i

P P …………..equation 3.4 

 

Example  
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(b) This area of Belgium is thought to be populated by two subpopulations:  the Walloons and 

the Flems.  They have an inbreeding coefficient  = 0.03.  In a certain case a suspect is identified.  

He has genotypes ab.  The stain at the scene is genotype ab.   

(i) Please calculate the probability of the genotype ab using the product rule.   (2 marks) 

2Pr( )Pr( ) 2 0.26 0.12 0.0624a b      

(ii) Please calculate the probability of the genotype ab using NRC II recommendation 4.1. (2 

marks) 

The same (no correction for heterozygotes. 

(iii) Please give the formula for the probability of the genotype ab using NRC II 

recommendation 4.2 and evaluate it.    (3 marks) 

  
  

   2 (1 )Pr( ) (1 )Pr( ) 2 0.03 (0.97 0.26) 0.03 (0.97 0.12)
0.0757

1 1 2 1.03 1.06

a b   

 

        
 

  
 

(iv) What is the expected performance with respect to conservativeness of the product rule, NRC 

4.1 and 4.2 in this instance?   (3 marks) 

 

Shortcut rules 

The shortcut rules are demonstrated by way of examples given below.  These rules are not really 

‘derivations’ but are a set of rules that allow the answer to be written down.  With practice this 

becomes second nature.  We begin by writing the probability in the conditional form.  In front of the 

conditioning bar we place the genotype(s) of the ‘possible offender(s)’.  Behind the bar we place the 

conditioning genotype(s).  This should always include the suspect but in some circumstances other 

profiles may also be included here. This has become an area of some debate which is covered in a 

short section later in the chapter. 

 
Figure 7.4 A diagrammatic representation to assist evaluation using the shortcut rules. 

 

Example 7.8 The calculation of Pr(aa|aa). 

 

Although our purpose is to demonstrate the application of this process to mixed stains it is easiest 

to start with a simple example of a case where the stain at the scene is unmixed and shows the 

genotype aa.  The suspect is aa.  Hence we see that the only genotype for ‘possible offenders’ is aa 

and the only potential conditioning profile is the suspect, also aa.  Accordingly in this example we 

consider the calculation of the conditional probability Pr(aa|aa) shown figuratively in Figure 7.4.  

The following three steps are required to obtain the formula.   

Pr(aa | aa) 

Conditioning 

profile 

1st a 

2nd a 3rd a 

4th a 
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Apply a factor of 2 if the ‘possible offender’ is heterozygous.  The ‘possible offender’ will be the 

term in front of the conditioning bar.  In this example the ‘possible offender’ is the homozygote aa 

therefore no factor of 2 is required.   

Counting from the back towards the front; label each allele as the first of this type seen, second of 

this type seen and so on.  Replace each of the possible offender’s alleles with the terms given in 

Table 7.10.  It is necessary to proceed from one or other end of the offender’s genotype.  For 

instance in the calculation of Pr(aa|aa) we see that the homozygote aa in front of the conditioning 

bar is treated as the 3rd and 4th  a alleles.   

 

Table 7.10 The conversion of terms using the shortcut rules. 

1st allele a (1 ) ap  

2nd allele a (1 ) ap    

3rd allele a 2 (1 ) ap    

4th allele a 3 (1 ) ap    

…..  

 

Divide by a correction term based on the number of alleles in front of and behind the 

conditioning bar shown in Table 7.11 

 

Table 7.11 The correction terms 

2 alleles in front, 2 

behind 
(1 )(1 2 )    

2 in front, 4 behind (1 3 )(1 4 )    

2 in front, 6 behind (1 5 )(1 6 )    

4 in front, 2 behind (1 )(1 2 )(1 3 )(1 4 )        

4 in front, 4 behind (1 3 )(1 4 )(1 5 )(1 6 )        

4 in front, 6 behind (1 5 )(1 6 )(1 7 )(1 8 )        

N in front, M behind 
 

  

1 ( 1)

1 ( 3) 1 ( 2)

M

N M N M



 

 

     
 

 

This yields the familiar formula 
(3 (1 ) )(2 (1 ) )

Pr( | )
(1 )(1 2 )

a ap p
aa aa

   

 

   


 
 

 

 

 

Figure 7.5 A diagrammatic representation to assist evaluation using the shortcut rules.   

 

Example 7.9 The calculation of Pr(ab|ab). 

 

Consider the calculation of Pr(ab|ab) shown diagrammatically in Figure 7.5.  Application of the 

rules leads quickly to the familiar formula 

2nd b 1st a 

Pr(ab | ab) 

Conditioning 

profile 

1st b 2nd a 
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2( (1 ) )( (1 ) )

Pr( | )
(1 )(1 2 )

a bp p
ab ab

   

 

   


 
 

 

Example 7.10 

 

As a more practical example consider the following where the complainant (of race 1) has been 

genotyped as ab,  the suspect (of race 2) has been genotyped as cc, and a semen-stained swab taken 

from the complainant after an alleged assault has been genotyped as abc.  In the absence of any 

quantitative information the genotype of the offender could be ac, bc or cc. 

 

Complainant Race 1 Typed as ab 

Suspect Race 2 Typed as cc 

Swab  Typed as abc 

 

It is unreasonable to assume that the complainant and the suspect are from the same 

subpopulation if they are of different races. This assumption follows from a rigid application of a 

hierarchical population/sub population approach. However subpopulations from different races 

could share alleles that are identical by descent (IBD) by recent admixture, in which case this 

simplification may not be valid. Following the arguments of Nichols and Balding,47 the suspect and 

offender are assumed to be from the same subpopulation.  

The likelihood ratio uses the probabilities of the offender’s type conditional on the suspect’s type 

(the complainant’s type is ignored as having come from a different population): 

 

 
   

  

 
   

  

 
   

  

  

1

Pr( | ) Pr( | ) Pr( | )

2 1 2 1
since Pr |

1 1 2

2 1 2 1
Pr |

1 1 2

3 1 2 1
Pr |

1 1 2

(1 )(1 2 )

2 (1 ) 3 (1 )(2 2 )

a c

b c

c c

c a b c

LR
ac cc bc cc cc cc

p p
ac cc

p p
bc cc

p p
cc cc

LR
p p p p

  

 

  

 

   

 

 

   


 

    


 

    


 

         


 

 


     

 

 

Substitution of  = 0 recovers the product rule formulae given in Table 7.1 

 
1

2 2c a b c

LR
p p p p


 

and provides a useful check.   

 

2.  When should a genotype be used in the conditioning?2 

 

The subpopulation model works best when those people who share the same subpopulation as the 

suspect are used in the conditioning.  There are many complicating factors in this.  These include 

                                                           
2 This matter was brought to our attention by a senior caseworker in New Zealand, Sue Vintiner.  It has been 

constructively discussed in meetings in New Zealand and in conversations with Robert Goetz, Manager of the Forensic 

Biology Laboratory of the Division of Analytical Laboratories, NSW, Australia. 
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 The subpopulation of the suspect may both undefinable and unknown. 

 The subpopulation of any other typed person may be both undefinable and unknown.  

 

Clearly the suspect is a member of his or her own subpopulation whether or not we know that or 

can define it.  But who else is?  In many cases this is unanswerable.  The inclusion of additional 

genotypes in the conditioning if they are not members of the suspect’s subpopulation essentially 

adds an unwelcome random element.  Such an addition is not expected to improve the estimation 

process at all but rather adds variance about the true value.    The addition of such people tends to 

give a more conservative LR when the person and the suspect share many alleles.  It tends to give a 

less conservative LR when the person and the suspect share few or no alleles.  It had been supposed 

that the addition of random persons was conservative on average.  We are uncertain whether this is 

true but even if true it applies on average over a number of cases rather than in each case.  

Accordingly we consider that the addition of “random” genotypes to the conditioning may make the 

LR more or less conservative but does not improve the process of obtaining the best estimate. 

 

The effect of adding random genotypes is to randomise the answer. 

 

As a first approximation, we suggest that only those persons known or reasonably assumed to 

share the subpopulation of the suspect should be added to the conditioning.  This knowledge will 

very rarely be available in casework and hence most often only the suspect’s genotype will appear 

behind the conditioning.   

If the forensic scientist wishes to report the more conservative estimate we cannot think of 

anything better at this time than calculating the likelihood ratio both ways and reporting the smaller.  

 

Example:  A crime occurs in a small rural village in Switzerland.  The crime stain is genotype ab.  

The suspects are all local men from families that have lived in the area for a long time. Suspect 1 is 

genotype ab, suspect 2 ac and suspect 3 bd.   

 

Who is behind the bar?  I think all three can be assumed to be from the same subpopulation.   

 

So we want: 

  

 

 

EXAMPLE  

3. Please answer both parts of part (a), all parts of part (b), and part (c). 

(a) (i)  What are the assumption that lead to Hardy-Weinberg equilibrium?  

        (2 marks) 

 

Infinite population, random mating, no migration, mutation or selection 

 

(ii). What happens when you mix two different populations?    

        (2 marks) 

The Whalund effect.  More homozgyotes than expected fewer total heterozygotes although 

each heterozygote genotype may be up or down. 

2(2 (1 ) )(2 (1 ) )
Pr( | )

(1 5 )(1 6 )

a bP P
ab abacbd

   

 

   


 
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(b)   (i)   In a case we seek the probability of an ab heterozygote from a subpopulation where we 

have observed the suspect, ab, and one other individual who was ac. Please give the formulation for 

Pr(ab|aabc) using the method of recommendation 4.2. 

 

First a (1 )Pr( )a  

Second a (1 )Pr( )a    

Third a 2 (1 )Pr( )a    

Fourth a 3 (1 )Pr( )a    

 

Two allele in front and two behind (1 )(1 2 )    

Two allele in front and four behind (1 3 )(1 4 )    

Two allele in front and six behind (1 5 )(1 6 )    

 

  
  

2 2 (1 )Pr( ) (1 )Pr( )
Pr( | )

1 3 1 4

a b
ab abac

   

 

   


 
 

 

          (4 marks) 

(ii)      Define  when used in this context as if you were explaining it in court.  

        (2 marks) 

 

 can be viewed as a measure of relatedness between two different individuals or as the genetic 

distance between the subpopulations 

 

(iii) Please set 0   in the formula.  What do you obtain?  Why? (2 marks) 

 

Pr( | ) 2Pr( )Pr( )ab abac a b  which is the product rule.  This occurs because 0   means that 

there is no distance between subpopulations and hence only one population.   

 

EXAMPLE  

(b) Two exchange students Mr A and Mr B from a remote isolated village, Gioja, in Europe are 

studying at Auckland University.  They end up on the town with two Kiwi friends Mr C and Mr D 

who they have met at the gym.   

 

At a pub near the university later that night a man is seen to drunkenly strike the barman.  In the 

scuffle he bleeds and runs away.   The blood at the scene is typed at the vWA locus and is type 

14,18 

 

Two days later the Police investigate Messrs A, B, C and D.  They all willingly give DNA samples.  

The types are 

 

Mr A 14,18 

Mr B 14,19 

Mr C 15,18 

Mr D 16,16 
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(i) Please produce the estimate for the probability of a 14,18 genotype using the product rule, NRC 

recommendation 4.1, and NRC recommendation 4.2.  You may use f14 = 0.10, f15 = 0.12, f16 = 0.15, 

f18 = 0.08, f19 = 0.06, F = 0.03,  = 0.03 

          (5 marks) 

 

Product rule 2 0.10 0.08 0.016    

 

4.1 same (no correction for heterozygotes) 

 

4.2 
  14 182 2 (1 ) (1 )

Pr(14,18 |14,18,14,19) 0.0224
(1 3 )(1 4 )

f f   

 

   
 

 
 

 

(ii) What are the assumptions of the product rule?      (2 marks) 

 

Hardy-Weinberg and Linkage equilibrium.  Good to spell out the assumptions of HW and LE as 

well.   

 

(iii) Which one would you use in a criminal trial in New Zealand, and why? 

          (3 mark 

Not taught in 2009 

 

Example from the 2009 exam 

 

Q2b  A crime occurs are a blood stain is left by the offender at a scene.  The genotype of the blood 

stain is type aa.  A group of four men become the suspects.  All four are members of a small 

community from Europe.  The genotypes of the four men are  

 

Suspect 1:   aa 

Suspect 2 ac 

Suspect 3 bd 

Suspect 4 cd 

 

You may use Pr(a) = 0.02, Pr(b) = 0.10, Pr(c)= 0.10, Pr(d)=0.10, F = 0.03, 0.03   

 

Using the data above please give the estimate of the frequency of this genotype using the product 

rule and using NRC II recommendation 4.1?   3marks 

 

 

Product rule:   0.0004 

NRC 4.1 0.000998 

 

When we use NRC II recommendation 4.2 we need to consider the conditional probability of the 

genotype of the offender given the alleles we know came from the subpopulation of the suspect.  

This is often set out in the form  

 

Pr(__ | _____________) .  Please insert the correct alleles into this term and evaluate.   

 

(3 (1 )Pr( ))(4 (1 )Pr( ))
Pr( | ) 0.0102

(1 7 )(1 8 )

a a
aa aaacbdcd

   

 

   
 

 
  5 marks 
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For the hypotheses  

 

Hp:  Suspect 1 is the offender 

Hd:  A random man is the offender  

 

What is the likelihood ratio using NRC II recommendation 4.2? 

 

Ans:   98         2 marks 
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PATERNITY CASEWORK 

 

Figure 10.1 Profiles of mother, child, the true father and a putative father at four autosomal STR 

loci. 

 

EVALUATION OF EVIDENCE 

 

Three methods have been offered for the evaluation of parentage testing results. These are often 

termed the paternity index (PI), the probability of paternity, and an exclusion probability.659,808 

Strong support is given for the PI approach by many authorities including Evett and Weir279 and the 

Paternity testing Commission of the International Society of Forensic Genetics.567  

EXCLUSION PROBABILITY 

 

Consider the most common case of parentage testing where we have a mother (M), child (C), 

and a man alleged to be the father (AF). These three persons have been typed and found to have the 

genotypes GM, GC, GAF, respectively. The genotypes of the mother and the child define one (or in 

some cases one of two) paternal alleles at each locus.  

An exclusion probability may be defined as “that fraction of men who do not possess the 

paternal allele or alleles.” As such it is strongly akin to the exclusion probability in mixtures 

evaluation.  

If the possible paternal alleles at a locus are A1…An (often there is only one possible paternal 

allele) then the exclusion probability at locus this locus (PEl) is 2

1

(1 Pr( ))
n

l i

i

PE A


   assuming Hardy-

Weinberg equilibrium. The PE across multiple loci (PE) is calculated as 1 (1 )l

l

PE PE   . For an 

extension to the consideration of relatives see Fung et al.336 

We have previously discussed Dr Charles Brenner’s92 explanation of the shortcomings of the 

probability of exclusion. We follow his treatment again here.  

Let us describe the evidence as: 

1. The blood type of the mother, 

2. The blood type of the child, and 

3. The blood type of the alleged father. 

 

Mother

Child

Putative father

True father
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From this information we can infer that: 

4. The alleged father is not excluded. 

 

Brenner points out that although statement 4 can be deduced from statements 1, 2 and 3, 

statement 3 cannot be deduced from 1, 2 and 4. Hence the use of statement 4 represents a loss of 

information. The exclusion probability is a summary of the evidence in 1, 2 and 4.  

 

B. PATERNITY INDEX 

 

The paternity index (PI) is a specialist term used in paternity testing to describe the likelihood 

ratio. Its structure is exactly as described for the likelihood ratio in Chapter 2 but has been used in 

paternity testing for longer than in other areas of forensic biology.267 Hallenberg and Morling395 

reported that 73% of respondents in the year 2000 and 78% in 2001 used the paternity index or the 

probability of paternity to interpret parentage evidence. Consider the two hypotheses: 

 

H1: The alleged father is the true father. 

H2: The alleged father is the not the true father.  

 

Hypothesis H1 represents one side of the allegation. In many paternity cases the action will be 

civil and it may not be appropriate to view this as the ‘prosecution’ hypothesis. Fortunately the 

same letter can stand for ‘paternity’. Hypothesis H2 represents the other side of the allegation; 

similarly it may not be appropriate to view this as the ‘defence’ hypothesis. 

If we consider some evidence, E, typically the genotypes of a child, the alleged father, and 

possibly the mother then Bayes’ theorem informs us that: 

 

1 1 1

2 2 2

Pr( | ) Pr( | ) Pr( )

Pr( | ) Pr( | ) Pr( )

H E E H H

H E E H H
   

 

The likelihood ratio term 1

2

Pr( | )

Pr( | )

E H

E H
 is usually written as PI and is the central term calculated 

under this approach. 

 

Use of the product rule in the evaluation of the Paternity Index. 

We have discussed the small bias inherent in the use of the product rule when population 

substructure exists. The method of Balding and Nichols47 can be used to evaluate likelihood ratios, 

or Paternity Indices, for paternity duos and trios when population substructure exists.  

When the Balding and Nichols’ correction is applied to a whole race or when conservatively 

large values of   are used this is thought to be an overcorrection which may err too much in one 

direction. This ‘conservative’ behaviour is considered desirable by some courts and scientists in 

criminal cases. However, this property of the subpopulation correction does not have such an 

obvious justification in civil cases.  

 



Page 23 John Buckleton 14/05/2019 

PROBABILITY OF PATERNITY 

 

Recall Bayes’ theorem that states 1 1

2 2

Pr( | ) Pr( )

Pr( | ) Pr( )

H E H
PI

H E H
  . We see that the paternity index relates 

the odds on paternity prior to considering the genetic evidence to those after considering that 

evidence. As with any Bayesian treatment the posterior probability of paternity can be calculated 

from the paternity index and the prior odds. The prior odds relate to the probability of paternity 

based on the non-genetic evidence. This could include statements of the mother as to with whom 

she had intercourse, or evidence that may suggest that the alleged father was out of the country or in 

prison at the time of conception. Such evidence, if relevant and admissible, affects the prior odds.  

However, it has become customary to set the prior odd to 1:1, that is to assign prior probabilities 

of 50% to both H1 and H2, when calculating the probability of paternity. This assumption is hard to 

justify at the fundamental level{Robertson, 1995 #22;Good, 2001 #3144@ at pg 68 & 89-91} and 

must be seen simply as a pragmatic tool. It may be completely appropriate in many cases but 

equally may be totally inappropriate in others. It would seem wise, however, to make this 

assumption of equal prior odds explicit.  

Utilising this assumption we see that 1

2

Pr( | )

Pr( | )

H E
PI

H E
  and hence that 1

1

Pr( | )

1 Pr( | )

H E
PI

H E



 yielding 

1Pr( | )
1

PI
H E

PI



.  

We (and others) cannot support the assumption of prior odds despite its extensive use and rather 

advocate use of the PI alone.67,659 This stance is taken by the Paternity Testing Commission of the 

International Society of Forensic Genetics:  

“If the weight of the evidence is calculated, it shall be based on likelihood ratio principles. 

The paternity index, PI, is a likelihood ratio”568 

 

PATERNITY TRIOS:  MOTHER, CHILD AND ALLEGED FATHER 

 

We begin by considering at least two hypotheses. In the most common case these could be: 

 

H1:   The alleged father is the true father, (and the mother is the true mother). 

H2:   A random person who is not related to the alleged father is the true father (and the mother is 

the true mother). 

 

The assumption that the person labelled as the mother is the true mother of the child is usually 

unstated. Although these two hypotheses are the most commonly used we note that they are not 

exhaustive as the random person may be a relative of the alleged father. This again suggests an 

alternative approach based on the general form of Bayes’ theorem. Such an approach is not in use in 

any laboratory of which we are aware.  

Typically then we require 1

2

Pr( , , | )

Pr( , , | )

C M AF

C M AF

G G G H
PI

G G G H
 . 
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It is customary to decompose these probabilities using the third law of probability. Usually to 

evaluate the probabilities of the observing genotypes of individuals they are conditioned on the 

genotypes of their ancestors. For example: 

 

1 1 1

2 2 2

Pr( , , | ) Pr( | , , )Pr( , | )

Pr( , , | ) Pr( | , , )Pr( , | )

C M AF C M AF M AF

C M AF C M AF M AF

G G G H G G G H G G H
PI

G G G H G G G H G G H
  , 

 

where the genotype of the youngest person, the child, is conditioned on the parents, as opposed to: 

 

1 1 1

2 2 2

Pr( , , | ) Pr( | , , )Pr( , | )

Pr( , , | ) Pr( | , , )Pr( , | )

C M AF AF M C M C

C M AF AF M C M C

G G G H G G G H G G H
PI

G G G H G G G H G G H
  . 

 

Both decompositions are, of course, formally equivalent mathematically. However the former is 

easier to evaluate. Thus we will work with the former decomposition. 

It is customary to assume that the joint probability of observing the genotypes of the putative 

parents does not depend on the particular hypothesis, i.e. 

 

1 2Pr( , | ) Pr( , | ) Pr( , )M AF M AF M AFG G H G G H G G  . 

 

This assumption essentially states that the joint probability of observing the genotypes of the 

mother and alleged father are not conditioned on whether the alleged father is the true father or not. 

This is only true in the absence of any conditioning on the genotypes of any other children or 

descendants. Given this assumption the paternity index becomes 

 

1

2

Pr( | , , )

Pr( | , , )

C M AF

C M AF

G G G H
PI

G G G H
 . 

 

Evaluation of the PI can proceed directly from this equation. The numerator can be evaluated 

using a Punnett square at each locus where both parents are present in the conditioning.  

As with previous chapters we now turn to consideration of a series of examples and show in 

detail how to evaluate the paternity index, PI, for paternity trios. 

 

Example 10.1 

 Genotype 

Mother cd 

Child ac 

Alleged father ab 

Under H1 we assume that the alleged father is the true father, and may proceed by using a Punnett 

square: 
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  Genes from the father 

  a b 

Genes from the 

mother 

c ac bc 

d ad bd 

 

We see that the child’s genotype is one of the four (equiprobable) outcomes and assign the 

probability 
1Pr( | , , )C M AFG G G H = ¼. 

The mother is heterozygous for the maternal allele (Am = c) and can assign the value MM = ½ to 

the maternal Mendelian factor. The paternal allele is Ap = a. Under the hypothesis H2 we assign the 

probability 
2Pr( | , , )p M AFA G G H = pa, the allele probability of the a allele in this population. Hence the 

paternity index is 

 

1
4

1
2

1

2a a

PI
p p

 


. 

 

Example 10.2 

 Genotype 

Mother cc 

Child ac 

Alleged father ab 

 

Again under H1 we assume that the alleged father is the true father, and the Punnett square 

becomes: 

 

  Genes from the father 

  a b 

Genes from the 

mother 

c ac bc 

c ac bc 

 

We see that the child’s genotype occurs in two of the four (equiprobable) outcomes and assign 

the probability 
1Pr( | , , )C M AFG G G H = ½.  

The mother is homozygous for the maternal allele (Am = c) and we can assign MM = 1. The 

paternal allele Ap = a. As before we assign the probability 
2Pr( | , , )p M AFA G G H = pa under the 

hypothesis H2. Hence 

1
2 1

1 2a a

PI
p p

 


. 

 

Example 10.3 



Page 26 John Buckleton 14/05/2019 

 Genotype 

Mother ab 

Child ab 

Alleged father bc 

 

Under H1 we assume that the alleged father is the true father, and may proceed by a Punnett 

square: 

 

  Genes from the father 

  b c 

Genes from the 

mother 

a ab ac 

b bb bc 

 

We see that the child’s genotype occurs in one of the four (equiprobable) outcomes and assign 

the probability ¼ to this genotype.  
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Table 10.3 Form of PI for all non-excluded combinations of maternal and paternal genotypes. Lee 

et al.507 

 

Genotyp

e Mother 

Genotyp

e Child 

Genotyp

e Alleged 

Father 

PI (Alleged Father is 

True Father) 

aa 
aa 

aa 
1

ap
 

ab 

bb 
ab 

bc 

aa 

aa 

ab 
1

2 ap
 

ab 

ac 

bb 
ab 

bc 

bc 

ac cc 

cd 

ab ab 

aa 1

a bp p
 

ab 

ac  
1

2 a bp p
 

 

This example was introduced because of a small complexity that occurs under H2. This arises 

because either of the mother’s alleles may be the maternal allele, making attribution of both the 

maternal and the paternal allele ambiguous. Under H2we can see that the mother may contribute the 

a allele (Am = a) with probability MM = ½ or the b allele (Am = b) with probability MM = ½. If the 

maternal allele is  

Am = a then the paternal allele Ap must be b. If the maternal allele is Am = b then the paternal allele 

must be a. The denominator is therefore the sum of two terms. Hence 

1
4

1 1
2 2

1

2( )a b a b

PI
p p p p

 
 

. 

 

There are 15 distinct combinations of maternal and paternal genotypes possible, but if we use the 

product rule to evaluate PI we find that PI takes only four possible forms, depending on whether the 

alleged father is a homozygote or a heterozygote and whether or not the child’s paternal allele can 

be unambiguously identified.507 In table 10.3 we tabulate the possible combination of mother, child 

and alleged father along with the PI formulae utilising the product rule.  
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An example from the 2003 exam 

 

Q4. In a paternity dispute the mother, M, claims that a man AF is the father of the child, C. 

 

 Locus 1 Locus 2 

M cd ff 

C ac ef 

AF ab ee 

 

 

Allele probabilities 

Locus 1 Locus 2 

a 0.10 e 0.22 

b 0.08 f 0.20 

c 0.12   

d 0.15   

 

a.   Please give the mathematical definitions for the terms exclusion probability, the paternity 

index and the probability of paternity. Use the data from locus 1 to give examples of these 

terms. [5 marks] 

 

PE is the probability that a random man would be excluded.   

 
2 2

1 (1 ) (1 0.1) 0.81aPE p      1 (1 )l

l

PE PE    (numerical result not requested but it does 

show understanding) part marks for 2

1 (1 )i

i

PE p  without the above 

 

1

Pr( , , | ) 1
5

Pr( , , | ) 2

C M AF

C M AF a

G G G Hp
PI

G G G Hp p
   part marks for showing understanding by showing Punnet 

square or getting numerator or denominator correct  (numerical result not requested but it does 

show understanding). 

 

 

Prob pat 
1

PI

PI
=0.83 (numerical result not requested but it does show understanding). 

 

1.5 marks off for each section incorrect.  Most trouble was in PE.  Part marks awarded for 

understanding. 

b.  Please give the formula for the paternity index at locus 2 in terms of the allele probabilities.

        [2 marks] 

2

Pr( , , | ) 1

Pr( , , | )

C M AF

C M AF e

G G G Hp
PI

G G G Hp p
   1 mark for numerator correct 1 for denominator. 

c. Please evaluate the paternity index at both loci.    [1 marks] 
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1

2 a e

PI
p p

 or 5 and 4.55 =22.73  mark given for the algebraic solution or 5x4.55=22.73.  Part 

marks off if the numbers are there but the multiplication is not done.   

 

An example from the 2003 exam 

Q2. In a paternity dispute the mother, M, claims that a man AF is the father of the child, C. 

 

 Locus 1 Locus 2 

M cd ff 

C ac ef 

AF ab ee 

 

 

Allele probabilities 

Locus 1 Locus 2 

a 0.10 e 0.22 

b 0.08 f 0.20 

c 0.12   

d 0.15   

 

a. Please give the mathematical definitions for the terms exclusion probability, the paternity index 

and the probability of paternity. Use the data from locus 1 to give examples of these terms. [5 

marks] 

 

PE is the probability that a random man would be excluded.   

 
2

1 (1 )aPE p    1 (1 )l

l

PE PE    

 

1

Pr( , , | ) 1

Pr( , , | ) 2

C M AF

C M AF a

G G G Hp
PI

G G G Hp p
   

 

Prob pat 
1

PI

PI
 

b. Please give the formula for the paternity index at locus 2 in terms of the allele probabilities. 

       [2 marks] 

2

Pr( , , | ) 1

Pr( , , | )

C M AF

C M AF e

G G G Hp
PI

G G G Hp p
   

c. Please evaluate the paternity index at both loci.    [1 marks] 

1

2 a e

PI
p p

  

 

An example from the 2004 exam 

Please answer all parts. 

a) The table below gives the genotypes of Tsar Nicholas II, Tsarina Alexandra, and a child. 
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i)  Please calculate the probability of exclusion, paternity index and probability of paternity 

for this child being a child of the Tsar and Tsarina.  For the PI calculation use: 

Hp:  The child is a child of the Tsar and Tsarina 

Hd:  The child is a child of the Tsarina and a random man 

 

 

 Loci 

 VWA F13A1 

Child 15,16 5,7 

Tsar Nicholas II 15,16 7,7 

Tsarina Alexandra 15,16 3,5 

 Pr(15) = 0.10 

Pr(16) = 0.15 

 

Pr(3) = 0.05 

Pr(5) = 0.06 

Pr(7) = 0.07 

 

 

 VWA F13A1 Both 

PE 0.5625 0.8649 0.940894 

1-PE 0.4375 0.1351 0.059106 

 

1
2

1
2

4
Pr(15) Pr(16)

vWAPI  


  
1
2

13 1 1
2

14.3
Pr(7)

F API    

4 14.3 57.1bothPI     

57.1
0.983

1 58.1

PI
PP

PI
  


 

 

 

          (10 marks) 

ii) Please critique the value of these three methods of interpretation.                                                

 (2 marks) 

PE wastes information.  Possibly mention Brenner’s example. 

PP makes an assumption of equal prior odds which is often unjustified and potentially very 

wrong. 

PI is the preferred method but can be difficult to explain. 
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b) Tsar Nicholas II had a brother Grand Duke Michael.  What is the probability that Grand 

Duke Michael has the following genotype? Please show your working to justify your 

answer. 

 

 Loci 

 VWA F13A1 

Tsar Nicholas II 15,16 7,7 

Grand Duke Michael 15,16 3,5 

 

 

          (8 marks) 

Not taught in 2009 

 

An example from the 2006 Exam 

6. Please answer all parts. 

(a)  In a paternity dispute the mother, M, claims that a man AF is the father of the child, C. 

 

 Locus 1 Locus 2 

M ab cd 

C aa de 

AF ab ef 

 

 

Allele probabilities 

Locus 1 Locus 2 

a 0.10 c 0.12 

b 0.08 d 0.15 

  e 0.25 

  f 0.20 

 

(i)    Please calculate the exclusion probability (PE), the paternity index (PI) and the 

probability of paternity (PP) for these two loci. Please include your workings as marks will be 

given for the correct method.   (6 marks) 

 

 Locus 1 Locus 2 Both 

PE 0.81 0.5625 0.916875 

1-PE 0.19 0.4375 0.083125 

 
1
2

1 1
2

10
Pr( )

locusPI
a

    
1
2

2 1
2

4
Pr( )

locusPI
e

   

 

10 4 40bothPI     

 

40
0.976

1 41

PI
PP

PI
  


 

 

(ii) The lawyer for the defendant (AF) suggests to you that the best method for you to use is 

the exclusion probability.  How would you answer as in court?     

   (5 marks) 
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PE wastes information.  Possibly mention Brenner’s example. 

 

(iii) The lawyer for the defendant suggests to you that the assumption of prior odds of 1:1 is 

inappropriate.  The complainant had fallen asleep drugged at a party where there were 

11 men.  He asks you to rework the PP using prior odds of 1:10.  What is your answer? 

  (2 marks) 

 

Posterior odds = PI x prior odds 

 

1
40 4

10
posterior odds     then change the odds to a probability 

4
0.8

4 1
PP  


 

(iv) In redirection the prosecutor states to you that you have given a PI of 10.  He asks:  “By 

this do you mean that it is 10 times more likely that the defendant is the father?”  How 

would you answer?  (2 marks) 

 

This is an example of the prosecutors’ fallacy.  The statement is Pr(Hp|E).  Points for stating this, 

and giving an explanation of PP is paternity and that it needs an assumption of prior odds and points 

for Ian’s coping trick. 

 

Example from the 2007 exam 

Please answer all parts 

(a) What are Mendel’s two laws?      (2 marks) 

 

 

 

(b) Please draw a small pedigree using the correct symbols, calculate the paternity index, 

probability of exclusion and probability of paternity for the following genotype data.  

Indicate where you use Mendel’s laws.  (8 marks) 

 

 

Locus Mother Child Alleged father 

1 15,16 16,16 16,18 

2 7,8 7,8 7,8 

 

Allele probabilities locus 1 

15 0.10 

16 0.12 

18 0.15 

 

Allele probabilities locus 2 

7 0.20 

8 0.25 
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1 1
2 2

1 1
2

1
4.17

Pr(16) 2Pr(16)
locusPI


  


  

 

1
2

2 1
2

1
2.22

Pr(7) Pr(8) Pr(7) Pr(8)
locusPI   

  
 

 

4.17 2.22 9.26bothPI     

 

The factor’s of ½ in the PI’s come from Mendel’s first law (segregation).   

The multiplication when we do the PI for both loci comes from Mendel’s 2nd law (independent 

assortment) 

 

 Locus 1 Locus 2 Both loci 

paternal 

allele(s) 16 7 ,8 

 

# 

alleles 1 2 

 

PE 
2(1 Pr(16)) 0.7744   

2(1 Pr(7) Pr(8)) 0.3025    0.8426 

1-PE 0.2256 0.6975 0.1574 

 

Probability of paternity 0.9025
1

PI
PP

PI
 


 

 

(c) Explain to a scientific audience the strengths and weaknesses of the probability of exclusion, 

probability of paternity, and paternity index. (5 marks) 

 

PE wastes information.  Possibly mention Brenner’s example. 

PP makes an assumption of equal prior odds which is often unjustified and potentially very 

wrong. 

PI is the preferred method but can be difficult to explain. 

 

Example from the 2009 exam 

 

15,16 

7,8 

16,18 

7,8 

16,16 

7,8 
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Q4i.  A man is accused of fathering a child.  The genotypes of the child, the mother and the alleged 

father are given below.  Please evaluate the probability of exclusion, the paternity index and the 

probability of paternity for this case.  

8 marks 

 

 Locus 1 Locus 2 

Mother aa cd 

Child ab cd 

Alleged father bb cc 

 

You may use 

 

allele Pr(allele) 

a 0.12 

b 0.10 

c 0.12 

d 0.18 

 

What are the drawbacks of the probability of exclusion?   2 marks 

 

 

  Locus 1 Locus 2   

M aa cd   

C ab cd   

AF bb cc   

Paternal 

allele 

b  c or d   

Number 

of 

paternal 

alleles n 

1 2   

PE 0.81 0.49 0.9031 

1-PE 0.19 0.51 0.0969 

 

1

1
10

Pr( )
locusPI

b
  2

1
3.333

Pr( ) Pr( )
locusPI

c d
 


33.33bothPI   

33.33
0.971

34.33
PP    

 

Drawbacks of the PE are that it wastes information.  Specifically the genotype of the AF. 

 

 


